Clint Conrad

Professor of Mantle Dynamics


Office: ZEB-bygget 2.328
E-mail: c.p.conrad@geo.uio.no
University Web Page: Clint Conrad


Centre for Planetary Habitability
Department of Geosciences
University of Oslo
Sem Sælands vei 2A
0371 Oslo
Norway


Main | Background | Projects | Results | Research | Publications | Group | Courses


My available research output is summarized below, and is grouped as follows: Members of my research group are highlighted in bold, and denoted as:
§undergraduate student, graduate student, or postdoctoral scholar.

Look for the included links to media reports about our work.




Clint Conrad's Peer-Reviewed Publications

2025

  1. Ebbing, J., J.R. Hopper, C.P. Conrad, G. Milne, R. Steffen, J.C. Afonso, V.R. Barletta, A.M.G. Ferreira, J. Freienstein, S.E. Hansen, B.H. Heincke, G. Jones, S. Lebedev, M. Moorkamp, D.L. Schutt, and A. Wansing (2025), Importance of solid earth structure for understanding the evolution of the Greenland ice sheet, Journal of the Geological Society, 182, jgs2024-2291, doi:10.1144/jgs2024-2291. [online] [reprint]

  2. Wang, H. , V. Magni, C.P. Conrad, and M. Domeier (2025), Hydrous regions of the mantle transition zone lie beneath areas of continental intraplate volcanism, Geochemistry, Geophysics, Geosystems, 26, e2024GC011901, doi:10.1029/2024GC011901. [online] [reprint] [supplement]
    Results (see Fig. 3): [Gridded water maps] [Intraplate Volcanism Locations]
    Press: [PHAB News] [Eos Spotlight]

  3. Mohn, C.E., R. Caracas, and C.P. Conrad (2025), Lower mantle water distribution from ab initio proton diffusivity in bridgmanite, Earth and Planetary Science Letters, 649, 119095, doi:10.1016/j.epsl.2024.119095. [online] [reprint]

2024

  1. Weerdesteijn, M.F.M., and C.P. Conrad (2024), Recent ice melt above a mantle plume track is accelerating the uplift of Southeast Greenland, Communications Earth & Environment, 5, 791, doi:10.1038/s43247-024-01968-6. [online] [reprint] [supplement] [review]
    Press: [PHAB News] [Titan (Norwegian)] [Science Norway]

  2. Heyn, B.H., G.E. Shephard, and C.P. Conrad (2024), Prolonged multi-phase magmatism due to plume-lithosphere interaction as applied to the High Arctic Large Igneous Province, Geochemistry, Geophysics, Geosystems, 25, e2023GC011380, doi:10.1029/2023GC011380. [online] [reprint] [supplement]
    Press: [EGU Geodynamics Blog]

  3. Wang, Y. , Á. Király, C.P. Conrad, L.N. Hansen, and M. Fraters (2024), The importance of anisotropic viscosity in numerical models, for olivine textures in shear and subduction deformations, τeκτoniκa, 2, 157-173, doi:10.55575/tektonika2024.2.1.67. [online] [reprint] [supplement]

  4. Ramirez, F.D.C., K. Selway, C.P. Conrad, V. Maupin, and M. Smirnov (2024), Lateral and radial viscosity structure of Fennoscandia inferred from seismic and magnetotelluric observations, Physics of the Earth and Planetary Interiors, 351, 107178, doi:10.1016/j.pepi.2024.107178. [online] [reprint]

2023

  1. Ramirez, F.D.C., C.P. Conrad, and K. Selway (2023), Grain size reduction by plug flow in the wet oceanic upper mantle explains the asthenosphere's low seismic Q zone, Earth and Planetary Science Letters, 616,118232, doi:10.1016/j.epsl.2023.118232. [online] [reprint] [supplement]

  2. Weerdesteijn, M.F.M., J.B. Naliboff, C.P. Conrad, J.M. Reusen, R. Steffen, T. Heister, and J. Zhang (2023), Modeling viscoelastic solid earth deformation due to ice age and contemporary glacial mass changes in ASPECT, Geochemistry, Geophysics, Geosystems, 24, e2022GC010813, doi:10.1029/2022GC010813. [online] [reprint]

  3. Paul, J., C.P. Conrad, T.W. Becker, and A. Ghosh (2023), Convective self-compression of cratons and the stabilization of old lithosphere, Geophysical Research Letters, 50, e2022GL101842, doi:10.1029/2022GL101842. [online] [reprint] [supplement]

2022

  1. Weerdesteijn, M.F.M., C.P. Conrad, and J.B. Naliboff (2022), Solid earth uplift due to contemporary ice melt above low-viscosity regions of the upper mantle, Geophysical Research Letters, 49, e2022GL099731, doi:10.1029/2022GL099731. [online] [reprint] [supplement]

  2. Ramirez, F.D.C., K. Selway, C.P. Conrad, and C. Lithgow-Bertelloni (2022), Constraining upper mantle viscosity using temperature and water content inferred from seismic and magnetotelluric data, Journal of Geophysical Research: Solid Earth, 127, e2021JB023824, doi:10.1029/2021JB023824. [online] [reprint]

  3. Marcilly, C.M, T.H Torsvik, and C.P. Conrad (2022), Global Phanerozoic sea levels from paleogeographic flooding maps, Gondwana Research, 110, 128-142, doi:10.1016/j.gr.2022.05.011. [online] [reprint] [supplement] [erratum] [erratum pdf]
    Press: [CEED Blog]

  4. Heyn, B.H., and C.P. Conrad (2022), On the relation between basal erosion of the lithosphere and surface heat flux for continental plume tracks, Geophysical Research Letters, 49, e2022GL098003, doi:10.1029/2022GL098003. [online] [reprint] [supplement]
    Press: [CEED Blog]

2021

  1. Karlsen, K.S., C.P. Conrad, M. Domeier, and R.G. Trønnes (2021), Spatiotemporal variations in surface heat loss imply a heterogeneous mantle cooling history, Geophysical Research Letters, 48, e2020GL092119, doi:10.1029/2020GL092119. [online] [reprint] [supplement]
    Results: [Seafloor Age Grids]
    Press: [forskning.no] [New Scientist] [Popular Mechanics] [Phys.org] [Daily Mail] [Yahoo] [IFL Science]

2020

  1. Király, Á., C.P. Conrad, and L.N. Hansen (2020) Evolving viscous anisotropy in the upper mantle and its geodynamic implications, Geochemistry, Geophysics, Geosystems, 21, e2020GC009159, doi:10.1029/2020GC009159. [online] [reprint] [supplement]
    Repository: [https://doi.org/10.11582/2020.00039]

  2. Heyn, B.H., C.P. Conrad, and R.G. Trønnes (2020), Core-mantle boundary topography and its relation to the viscosity structure of the lowermost mantle, Earth and Planetary Science Letters, 543, 16358, doi:10.1016/j.epsl.2020.116358. [online] [reprint] [supplement]

  3. Heyn, B.H., C.P. Conrad, and R.G. Trønnes (2020), How thermochemical piles can (periodically) generate plumes at their edges, Journal of Geophysical Research, 125, e2019JB018726, doi:10.1029/2019JB018726. [online] [reprint]
    Press: [Highlight in Nature Reviews Earth & Environment]

  4. Karlsen, K.S., M. Domeier, C. Gaina, and C.P. Conrad (2020), A tracer-based algorithm for automatic generation of seafloor age grids from plate tectonic reconstructions, Computers and Geosciences, 140, 104508, doi:10.1016/j.cageo.2020.104508. [online] [reprint] [supplement]
    Results and code: [TrakTec code] [Seafloor Age Grids]
    Press: [CEED Blog] [forskning.no]

  5. Sames, B., M. Wagreich, C.P. Conrad, and S. Iqbal (2020) Aquifer-eustasy as the main driver of short-term sea-level fluctuations during Cretaceous hothouse climate phases, Geological Society, London, Special Publications, 498, 9-38, doi:10.1144/SP498-2019-105. [online] [reprint] [Special Cretaceous Climate Issue]

  6. Hartmann, R., J. Ebbing, and C.P. Conrad (2020), A Multiple 1D Earth Approach (M1DEA) to account for lateral viscosity variations in solutions of the sea level equation: An application for glacial isostatic adjustment by Antarctic deglaciation, Journal of Geodynamics, 135, 101695, doi:10.1016/j.jog.2020.101695. [online] [reprint]
    Code: [GitHub: Rotational Feedback for Selen]

2019

  1. Wessel, P., and C.P. Conrad (2019) Assessing models for Pacific absolute plate and plume motions, Geochemistry, Geophysics, Geosystems, 20, 6016-6032, doi:10.1029/2019GC008647. [online] [reprint]

  2. Torsvik, T.H., B. Steinberger, G.E. Shephard, P.V. Doubrovine, C. Gaina, M Domeier, C.P. Conrad, and W.W. Sager (2019) Pacific-Panthalassic reconstructions: Overview, errata and the way forward, Geochemistry, Geophysics, Geosystems, 20, 3659-3689, doi:10.1029/2019GC008402. [online] [reprint]
    Supplemental Files: [PACIFIC.ZIP] [Pacific_EARTHBYTE_Model_R.ZIP]

  3. Karlsen, K.S., C.P. Conrad, and V. Magni (2019), Deep water cycling and sea level change since the breakup of Pangea, Geochemistry, Geophysics, Geosystems, 20, 2919-2935, doi:10.1029/2019GC008232. [online] [reprint]
    Press: [NRK (Norwegian)] [Glåmdalen (Norwegian)] [Live Science] [New Scientist] [Futurism]

  4. Crameri, F., C.P. Conrad, L. Montési, and C.R. Lithgow-Bertelloni (2019) The dynamic life of an oceanic plate, Tectonophysics, 760, 107-135, doi:10.1016/j.tecto.2018.03.016. [online] [reprint] [Special Issue]
    Press: [EGU Blog] [EOS]

  5. Steinberger, B., C.P. Conrad, A. Osei Tutu, and M.J. Hoggard (2019) On the amplitude of dynamic topography at spherical harmonic degree two, Tectonophysics, 760, 221-228, doi:10.1016/j.tecto.2017.11.032. [online] [reprint] [Special Issue]

  6. Paul, J., A. Ghosh, and C.P. Conrad (2019) Traction and strain-rate at the base of the lithosphere: An insight into cratonic survival, Geophysical Journal International, 217, 1024-1033, doi:10.1093/gji/ggz079. [online] [reprint] [supplement] [erratum]

2018

  1. Heyn, B.H., C.P. Conrad, and R.G. Trønnes (2018), Stabilizing effect of compositional viscosity contrasts on thermochemical piles, Geophysical Research Letters, 45, 7523-7532, doi:10.1029/2018GL078799. [online] [reprint] [supplement]

  2. Watkins, C.E., and C.P. Conrad (2018), Constraints on dynamic topography from asymmetric subsidence of the mid-ocean ridges, Earth and Planetary Science Letters, 484, 264-275, doi:10.1016/j.epsl.2017.12.028. [online] [reprint]

2017

  1. Conrad, C.P., K. Selway, M.M. Hirschmann, M.D. Ballmer, and P. Wessel (2017), Constraints on volumes and patterns of asthenospheric melt from the space-time distribution of seamounts, Geophysical Research Letters, 44, 7203-7210, doi:10.1002/2017GL074098. [online] [reprint]

  2. Dangendorf, S., M. Marcos, G. Wöppelmann, C.P. Conrad, T. Frederikse, and R. Riva (2017), Reassessment of 20th century global mean sea level rise, Proceedings of the National Academy of Sciences, 114, 5946-5951, doi: 10.1073/pnas.161007114. [online] [reprint] [supplement]
    Press: [UiO's Titan] [Washington Post] [The Independent] [Deutsche Welle] [phys.org] [E&E News] [The Telegraph]
    Blogs: [Union of Concerned Scientists]
    Norwegian Press: [CEED Press Release] [UiO's Titan] [geoforskning.no]

2016

  1. Hansen, L.N., C.P. Conrad, Y. Boneh, P. Skemer, J.M. Warren, and D.L. Kohlstedt (2016), Viscous anisotropy of textured olivine aggregates, Part 2: Micromechanical model, Journal of Geophysical Research, 121, 7137-7160, doi: 10.1002/2016JB013240. [online] [reprint] [supplement]

  2. Plyusnina, E.E., D.A. Ruban, C.P. Conrad, G.d.S. dos Anjos Zerfass, and H. Zerfass (2016), Long-term eustatic cyclicity in the Paleogene: a critical assessment, Proceedings of the Geologists' Association, 127, 425-434, doi: 10.1016/j.pgeola.2016.03.006. [online] [reprint]

  3. Veit, E., and C.P. Conrad (2016), The impact of groundwater depletion on spatial variations in sea level change during the past century, Geophysical Research Letters, 43, 3351-3359, doi:10.1029/2012GL068118. [online] [reprint]
    Results: [sea level response model]

  4. Sames, B., M. Wagreich, J.E. Wendler, B.U. Haq, C.P. Conrad, M.C. Melinte-Dobrinescu, X. Hu, I. Wendler, E. Wolfgring, I.Ö. Yilmaz, and S.O. Zorina (2016), Review: Short-term sea-level changes in a greenhouse world - a view from the Cretaceous, Palaeogeography, Palaeoclimatology, Palaeoecology, 441, Part 3, 393-411, doi:10.1016/j.palaeo.2015.10.045. [online] [reprint] [Cretaceous Volume]

2015

  1. Becker, T.W., A.J. Schaeffer, S. Lebedev, and C.P. Conrad (2015), Toward a generalized plate motion reference frame, Geophysical Research Letters, 42, 3188-3196, doi:10.1002/2015GL063695. [online] [reprint] [supplement]

  2. Ballmer, M.D., C.P. Conrad, E.I. Smith, and R. Johnsen (2015), Intraplate volcanism at the edges of the Colorado Plateau sustained by a combination of triggered edge-driven convection and shear-driven upwelling, Geochemistry, Geophysics, Geosystems, 16, 366-379, doi:10.1002/2014GC005641. [online] [reprint] [supplement]

2014

  1. Becker, T.W., C.P. Conrad, A.J. Schaeffer, and S. Lebedev (2014), Origin of azimuthal seismic anisotropy in ocean plates and mantle, Earth and Planetary Science Letters, 401, 236-250, doi:10.1016/j.epsl.2014.06.014. [online] [reprint] [supplement]

2013

  1. Ruban, D.A., and C.P. Conrad (2013), Late Silurian-Middle Devonian long-term shoreline shifts on the northern Gondwanan margin: Eustatic versus tectonic controls, Proceedings of the Geologists' Association, 124, 883-892, doi:10.1016/j.pgeola.2012.12.004. [online] [reprint]

  2. Conrad, C.P., B. Steinberger, and T.H. Torsvik (2013), Conrad et al. reply, Nature, 503, E4-E4, doi:10.1038/nature12793. [online version] [reprint]
    Associated: Comment to Original Article

  3. Conrad, C.P. (2013), The solid earth's influence on sea level, Geological Society of America Bulletin, 125, 1027-1052, doi:10.1130/B30764.1. [online] [reprint]
    Press: [cover image] [NCYT Amazings]

  4. Conrad, C.P., B. Steinberger, and T.H. Torsvik (2013), Stability of active mantle upwelling revealed by net characteristics of plate tectonics, Nature, 498, 479-482, doi:10.1038/nature12203. [online] [reprint] [supplement] [auxiliary material]
    Associated Content: Comment and Reply [reprint]
    Press: [NBC News] [phys.org] [Science Daily] [Science News for Kids]
    Foreign Press: [scinexx (in German)] [futura-sciences (in French)]
    Hawaiian Media: [UH Manoa] [Star-Advertiser Reprint] [Star-Advertiser Local Section]

  5. van Summeren, J., E. Gaidos, and C.P. Conrad (2013), Magnetodynamo lifetimes for rocky, Earth-mass exoplanets with contrasting mantle convection regimes, Journal of Geophysical Research: Planets, 118, 938-951, doi:10.1002/jgre.20077. [online] [reprint]

  6. Ballmer, M.D., C.P. Conrad, E.I. Smith, and N. Harmon (2013), Non-hotspot volcano chains produced by migration of shear-driven upwelling toward the East Pacific Rise, Geology, 41, 479-482, doi:10.1130/G33804.1. [online] [reprint] [supplement]
    Press: [News note in Earth]

  7. Faccenna, C., T.W. Becker, C.P. Conrad, and L. Husson (2013), Mountain building and mantle dynamics, Tectonics, 32, 80-93, doi:10.1029/2012TC003176. [online] [reprint]

2012

  1. Husson, L., and C.P. Conrad (2012), On the location of hotspots in the framework of mantle convection, Geophysical Research Letters, 39, L17304, doi:10.1029/2012GL052866. [online] [reprint] [table]

  2. Natarov, S.I., and C.P. Conrad (2012), The role of Poiseuille flow in creating depth-variation of asthenospheric shear, Geophysical Journal International, 190 , 1297-1310, doi:10.1111/j.1365-246X.2012.05562.x. [online] [reprint]

  3. Combes, M., C. Grigné, L. Husson, C.P. Conrad, S. Le Yaouanq, M. Parenthoën, C. Tisseau, and J. Tisseau (2012), Multiagent simulation of evolutive plate tectonics applied to the thermal evolution of the Earth, Geochemistry, Geophysics, Geosystems, 13, Q05006, doi:10.1029/2011GC004014. [online] [reprint]

  4. Heuret, A., C.P. Conrad, F. Funiciello, S. Lallemand, and L. Sandri (2012), Relation between subduction megathrust earthquakes, trench sediment thickness and upper plate strain, Geophysical Research Letters, 39, L05304, doi:10.1029/2011GL050712. [online] [reprint] [supplement]

  5. van Summeren, J., C.P. Conrad, and C. Lithgow-Bertelloni (2012), The importance of slab pull and a global asthenosphere to plate motions, Geochemistry, Geophysics, Geosystems, 13, Q0AK03, doi:10.1029/2011GC003873. [online] [reprint] [theme issue]

  6. Husson, L., C.P. Conrad, and C. Faccenna (2012), Plate motions, Andean orogeny, and volcanism above the South Atlantic convection cell, Earth and Planetary Science Letters, 317-318, 126-135, doi:10.1016/j.epsl.2011.11.040. [online] [reprint]

  7. Ruban, D.A., S.O. Zorina, C.P. Conrad, and N.I. Afanasieva (2012), In quest of Paleocene global-scale transgressions and regressions: constraints from a synthesis of regional trends, Proceedings of the Geologists' Association, 123, 7-18, doi:10.1016/j.pgeola.2011.08.003. [online] [reprint]

2011

  1. Bianco, T.A., C.P. Conrad, and E.I. Smith (2011), Time-dependence of intraplate volcanism caused by shear-driven upwelling of low-viscosity regions within the asthenosphere, Journal of Geophysical Research, 116, B11103, doi:10.1029/2011JB008270. [online] [reprint]

  2. van Summeren, J., C.P. Conrad, and E. Gaidos (2011), Mantle convection, plate tectonics, and volcanism on hot exo-Earths, The Astrophysical Journal Letters, 736, L15, doi:10.1088/2041-8205/736/1/L15. [online] [reprint]
    Press: [abstract in ExoPlanet News]

  3. Conrad, C.P., T.A. Bianco, E.I. Smith, and P. Wessel (2011), Patterns of intraplate volcanism controlled by asthenospheric shear, Nature Geoscience, 4, 317-321, doi:10.1038/ngeo1111. [online] [reprint] [supplement]
    Data: Basaltic volcanism locations [intraplate] [other]
    Press: [news & views] [news note in Earth] [article in New Scientist]

2010

  1. Ruban, D., C.P. Conrad, and A.J. van Loon (2010), The challenge of reconstructing the Phanerozoic sea level and the Pacific Basin tectonics, Geologos, 16, 237-245, doi:10.2478/v10118-010-0007-9. [online version] [reprint]

  2. Ruban, D., S. Zorina, and C.P. Conrad (2010), No global-scale transgressive-regressive cycles in the Thanetian (Paleocene): evidence from interregional correlation, Palaeogeography Palaeoclimatology Palaeoecology, 295, 226-235, doi:10.1016/j.palaeo.2010.05.040. [online] [reprint]

  3. Gaidos, E., C.P. Conrad, M. Manga, and J. Hernlund (2010), Thermodynamic limits on magnetodynamos in rocky exoplanets, Astrophysical Journal, 718, 596-609, doi:10.1088/0004-637X/718/2/596. [online] [reprint]

  4. Fiedler§, J.W., and C.P. Conrad (2010), Spatial variability of sea level rise due to water impoundment behind dams, Geophysical Research Letters, 37, L12603, doi:10.1029/2010GL043462. [online] [reprint]
    Results: [sea level response model]
    Press: [highlight in Nature]

  5. Conrad, C.P., and M.D. Behn (2010), Constraints on lithosphere net rotation and asthenospheric viscosity from global mantle flow models and seismic anisotropy, Geochemistry, Geophysics, Geosystems, 11, Q05W05, doi:10.1029/2009GC002970. [online] [reprint] [theme issue]
    Results: [mantle flow model and anisotropy code]

  6. Conrad, C.P., B. Wu, E.I. Smith, T.A. Bianco, and A. Tibbetts (2010), Shear-driven upwelling induced by lateral viscosity variations and asthenospheric shear: A mechanism for intraplate volcanism, Physics of the Earth and Planetary Interiors, 178, 162-175, doi:10.1016/j.pepi.2009.10.001. [online] [reprint]
    Press: [highlight in Nature Geoscience] [summary on MantlePlumes.org]

2009

  1. Naliboff, J.B., C.P. Conrad, and C. Lithgow-Bertelloni (2009), Modification of the Lithospheric Stress Field by Lateral Variations in Plate-Mantle Coupling, Geophysical Research Letters, 36, L22307, doi:10.1029/2009GL040484. [online] [reprint]
    Press: [Highlight in EOS]

  2. Conrad, C.P., and L. Husson (2009), Influence of dynamic topography on sea level and its rate of change, Lithosphere, 1, 110-120, doi:10.1130/L32.1. [online] [reprint]
    Results: [dynamic topography model]

  3. Cooper, C.M., and C.P. Conrad (2009), Does the mantle control the maximum thickness of cratons?, Lithosphere, 1, 67-72, doi:10.1130/L40.1. [online] [reprint] [erratum]

  4. Métivier, L., O. de Viron, C.P. Conrad, S. Renault, M. Diament, and G. Patau (2009), Evidence of earthquake triggering by the solid earth tides, Earth and Planetary Science Letters, 278, 370-375, doi:10.1016/j.epsl.2008.12.024. [online] [reprint]
    Press: [New Scientist Article] [Geo.de Article (in German)] [Johns Hopkins News-Letter]

  5. Becker, T.W., C.P. Conrad, B. Buffett, and R.D. Müller (2009), Past and present seafloor age distributions and the temporal evolution of plate tectonic heat transport, Earth and Planetary Science Letters, 278, 233-242, doi:10.1016/j.epsl.2008.12.007. [online] [reprint]

2008

  1. Métivier, L., and C.P. Conrad (2008), Body tides of a convecting, laterally heterogeneous, and aspherical Earth, Journal of Geophysical Research, 113, B11405, doi:10.1029/2007JB005448. [online] [reprint] [supplement]

  2. Meade, B.J., and C.P. Conrad (2008), Andean growth and the deceleration of South American subduction: Time evolution of a coupled orogen-subduction system, Earth and Planetary Science Letters, 275, 93-101, doi:10.1016/j.epsl.2008.08.007. [online] [reprint]
    Press: [highlight in Nature Geoscience]

  3. Wu, B., C.P. Conrad, and A. Heuret, C. Lithgow-Bertelloni, and S. Lallemand (2008), Reconciling strong slab pull and weak plate bending: The plate motion constraint on the strength of mantle slabs, Earth and Planetary Science Letters, 272, 412-421, doi:10.1016/j.epsl.2008.05.009 [online] [reprint] [table 1]

  4. Husson, L., C.P. Conrad, and C. Faccenna (2008), Tethyan closure, Andean orogeny, and westward drift of the Pacific basin, Earth and Planetary Science Letters, 271, 303-310, doi:10.1016/j.epsl.2008.04.022. [online] [reprint]
    Press: [highlight in Nature Geoscience]

2007

  1. Loyd, S.J., T.W. Becker, C.P. Conrad, C. Lithgow-Bertelloni, and F.A. Corsetti (2007), Time variability in Cenozoic reconstructions of mantle heat flow: Plate tectonic cycles and implications for Earth's thermal evolution, Proceedings of the National Academy of Sciences, 104, 14266-14271, doi:10.1073/pnas.0706667104. [online] [reprint]
    Press: [Science Daily] [Synopsis at PNAS]

  2. Conrad, C.P., M.D. Behn, and P.G. Silver (2007), Global mantle flow and the development of seismic anisotropy: Differences between the oceanic and continental upper mantle, Journal of Geophysical Research, 112, B07317, doi:10.1029/2006JB004608. [online] [reprint] [supplement]
    Results: [mantle flow model and anisotropy code]

  3. Steiner, S.A., and C.P. Conrad (2007), Does active mantle upwelling help drive plate motions?, Physics of the Earth and Planetary Interiors, 161, 103-114, doi:10.1016/j.pepi.2007.01.005. [online] [reprint]

  4. Conrad, C.P., and C. Lithgow-Bertelloni (2007), Faster seafloor spreading and lithosphere production during the mid-Cenozoic, Geology, 35, 29-32, doi:10.1130/G22759A.1. [online] [reprint] [spreading rate data]
    Press: [highlight in Nature]

2006

  1. Husson, L., and C.P. Conrad (2006), Tectonic velocities, dynamic topography, and relative sea level, Geophysical Research Letters, 33, L18303, doi:10.1029/2006GL026834. [online] [reprint]

  2. Conrad, C.P., and C. Lithgow-Bertelloni (2006), Influence of continental roots and asthenosphere on plate-mantle coupling, Geophysical Research Letters, 33, L05312, doi:10.1029/2005GL025621. [online] [reprint] [lithosphere thickness model]
    Press: [xkcd cartoon] [s-Ink figure]

  3. Xu, X., C. Lithgow-Bertelloni, and C.P. Conrad (2006), Global reconstructions of Cenozoic seafloor ages: Implications for bathymetry and sea level, Earth and Planetary Science Letters, 243, 552-564, doi:10.1016/j.epsl.2006.01.010. [online] [reprint]

2005

  1. Jahren, A.H., C.P. Conrad, N.C. Arens, G. Mora, and C. Lithgow-Bertelloni (2005), A plate tectonic mechanism for methane hydrate release along subduction zones, Earth and Planetary Science Letters, 236, 691-704, doi:10.1016/j.epsl.2005.06.009. [online] [reprint]

  2. Bilek, S.L., C.P. Conrad, and C. Lithgow-Bertelloni (2005), Slab pull, slab weakening, and their relation to deep intra-slab seismicity, Geophysical Research Letters, 32, L14305, doi:10.1029/2005GL022922. [online] [reprint]

2004

  1. Conrad, C.P., S. Bilek, and C. Lithgow-Bertelloni (2004), Great earthquakes and slab pull: interaction between seismic coupling and plate-slab coupling, Earth and Planetary Science Letters, 218, 109-122, doi:10.1016/S0012-821X(03)00643-5 [online] [reprint]

  2. Conrad, C.P., C. Lithgow-Bertelloni, and K.E. Louden (2004), Iceland, the Farallon slab, and dynamic topography of the North Atlantic, Geology, 32, 177-180, doi:10.1130/G20137.1. [online] [reprint]

  3. Conrad, C.P., and C. Lithgow-Bertelloni (2004), The temporal evolution of plate driving forces: Importance of "slab suction" versus "slab pull" during the Cenozoic, Journal of Geophysical Research, 109, B10407, doi:10.1029/2004JB002991. [online] [reprint]

  4. Behn, M.D., C.P. Conrad, and P.G. Silver (2004), Detection of upper mantle flow associated with the African superplume, Earth and Planetary Science Letters, 224, 259-274, doi:10.1016/j.epsl.2004.05.026. [online] [reprint]

2003

  1. Conrad, C.P., and M. Gurnis (2003), Mantle flow, seismic tomography and the breakup of Gondwanaland: Integrating mantle convection backwards in time, Geochemistry, Geophysics, Geosystems, 4, 1031, doi:10.1029/2001GC000299. [online] [reprint]

2002

  1. Conrad, C.P., and C. Lithgow-Bertelloni (2002), How mantle slabs drive plate tectonics, Science, 298, 207-209, doi:10.1126/science.1074161. [online] [reprint] [supplement]
    Press: [U. Michigan press release] [Geotimes article]

2001

  1. Conrad, C.P., and B.H. Hager (2001), Mantle convection with strong subduction zones, Geophysical Journal International, 144, 271-288, doi:10.1046/j.1365-246x.2001.00321.x. [online] [reprint]

  2. Lithgow-Bertelloni, C., M.A. Richards, C.P. Conrad, and R.W. Griffiths (2001), Plume generation in natural and thermal convection at high Rayleigh and Prandtl numbers, Journal of Fluid Mechanics, 434, 1-21, doi:10.1017/S0022112001003706. [online] [reprint]

2000

  1. Conrad, C.P. (2000), Convective instability of thickening mantle lithosphere, Geophysical Journal International, 143, 52-70, doi:10.1046/j.1365-246x.2000.00214.x. [online] [reprint]

1999

  1. Conrad, C.P., and B.H. Hager (1999), Effects of plate bending and fault strength at subduction zones on plate dynamics, Journal of Geophysical Research, 104, 17551-17571, doi:10.1029/1999JB900149. [online] [reprint]

  2. Conrad, C.P., and B.H. Hager (1999), The thermal evolution of an earth with strong subduction zones, Geophysical Research Letters, 26, 3041-3044, doi:10.1029/1999GL005397. [online] [reprint]

  3. Conrad, C.P., and P. Molnar (1999), Convective instability of a boundary layer with temperature- and strain-rate-dependent viscosity in terms of "available buoyancy", Geophysical Journal International, 139, 51-68, doi:10.1046/j.1365-246X.1999.00896.x. [online] [reprint]

1998

  1. Molnar, P., G.A. Houseman, and C.P. Conrad (1998), Rayleigh-Taylor instability and convective thinning of mechanically thickened lithosphere: Effects of non-linear viscosity decreasing exponentially with depth and of horizontal shortening of the layer, Geophysical Journal International, 133, 568-584, doi:10.1046/j.1365-246X.1998.00510.x. [online] [reprint]

1997

  1. Conrad, C.P., and B.H. Hager (1997), Spatial variations in the rate of sea level rise caused by the present-day melting of glaciers and ice sheets, Geophysical Research Letters, 24, 1503-1506, doi:10.1029/97GL01338. [online] [reprint]

  2. Conrad, C.P., and P. Molnar (1997), The growth of Rayleigh-Taylor-type instabilities in the lithosphere for various rheological and density structures, Geophysical Journal International, 129, 95-112, doi:10.1111/j.1365-246X.1997.tb00939.x. [online] [reprint]

1996

1995

  1. Conrad, C.P., and B.H. Hager (1995), The elastic response of the earth to interannual variations in Antarctic precipitation, Geophysical Research Letters, 22, 3183-3186, doi:10.1029/95GL03176. [online] [reprint]




Clint Conrad's Other Publications

Perspectives

  • Conrad, C.P. (2015), How climate influences sea-floor topography, Science, 347, 1204-1205, doi:10.1126/science.aaa6813. [online] [reprint] [Crowley article]

Blogs

  • Conrad, C.P. (2017), How good were the old forecasts of sea level rise?, in EGU Geodynamics Blog, ed. by G. Shephard. [article] [hard copy]

  • Sames, B., M. Wagreich, and C.P. Conrad (2016), Why do Cretaceous sea-level changes matter in today's global change discussions?, IGCP 609 Popular Scientific Overview. [online] [hard copy]

Book Reviews

  • Conrad, C.P. (2012), Review of A Student's Guide to Geophysical Equations by W. Lowrie, 2011, Geological Magazine, 149, 1132-1133, doi:10.1017/S0016756812000143. [online] [reprint]

Obituaries

Reference Modules

Special Issues

  • Gaina, C., C. Mac Niocaill, C.P. Conrad, B. Steinberger, and H.H. Svensen (2019), Linking plate tectonics and volcanism to deep earth dynamics - A tribute to Trond H. Torsvik, Tectonophysics, 760, 1-3, doi:10.1016/j.tecto.2019.03.002. [online] [reprint] [special Issue]

Meeting Notes

  • Steffen, R., and C.P. Conrad (2025), The role of the solid earth for the evolution of the polar ice sheets, in European Polar Science Week 2024: Summary Report, ed. by O. Grabak, L. Lorinczi, D. Fernandez Prieto, and M. Wearing, p. 28-29. [Zenodo] [website] [reprint]

  • Dalton, C.A., C.P. Conrad, and A.M. Trehu (2011), What is the lithosphere-asthenosphere boundary? , EOS, Transactions American Geophysical Union, 92, 481, doi:10.1029/2011EO510009. [online] [reprint]

Conference Proceedings

Thesis




Clint Conrad's Public Lectures