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Convective instability of thickening mantle lithosphere
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INTRODUCTION

SUMMARY

Mantle lithosphere, being colder and therefore denser than the underlying mantle, is
prone to convective instability that can be induced by horizontal shortening. Numerical
experiments on a cold layer with imposed horizontal shortening are carried out to
examine the relative importance of mechanical thickening, thermal diffusion and
gravitational instability in deforming the layer. This analysis is then used to develop a
method for determining which of these styles dominates for a layer thickening at a given
rate. If viscosity is non-Newtonian, the imposition of shortening decreases the litho-
spheric strength, which causes perturbations to the lithosphere’s temperature structure
to grow exponentially with time. Once these perturbations become sufficiently large,
they then grow super-exponentially with time, eventually removing the lithospheric
base. Because lithospheric viscosity is highly temperature-dependent, at most only
the lower 30 per cent of the lithosphere participates in the downwelling associated with
this initial super-exponential growth event. After this event, however, a downwelling
develops that removes material advected into the region of downwelling by horizontal
shortening. The magnitude of this persistent downwelling depends on the rate and
duration of shortening. If the total amount of shortening does not exceed 50 per cent
(doubling of crustal thickness), then this downwelling extends to a depth three to four
times the thickness of undeformed lithosphere and forms a sheet significantly thinner
than the width of the region undergoing shortening. Once shortening stops, this down-
welling is no longer replenished by the shortening process, and should then detach due to
its inherent gravitational instability. The hottest 60 per cent of the mantle lithosphere
could be removed in such an event, which would be followed by an influx of hot, buoyant
asthenosphere that causes rapid surface uplift. Because more cold material is removed
after the cessation of shortening than by the initial gravitational instability, the former
has a potentially greater influence on surface uplift. The Tibetan interior is thought to
have been shortened by about 50 per cent in ~30 Myr and afterwards, at ~8 Ma,
experienced a period of rapid uplift that may have resulted from the removal of a large
downwelling ‘finger’ of cold lithosphere generated by shortening.

Key words: convective instability, gravitational instability, mantle lithosphere, thermal
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asthenosphere beneath it (Fig. 1a) (e.g. Fleitout & Froidevaux
1982; Houseman et al. 1981). If the mantle lithosphere becomes

Thickening of the crust is one consequence of horizontal
convergence at the Earth’s surface and is the main process by
which mountains are built. Thickening of mantle lithosphere
may occur as well, and has been proposed as an accompanying
process that may also affect mountain building. In particular,
thickening should enhance the gravitational instability of
cold, dense mantle lithosphere with respect to the hot, buoyant
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sufficiently unstable, localized convective downwelling, of the
type described by Howard (1964), may be initiated at the base
of the mantle lithosphere (Fig. 1b). The subsequent removal of
cold lithosphere, and its replacement by hot mantle, could result
in rapid surface uplift followed by extension (e.g. Bird 1979;
England & Houseman 1989; Neil & Houseman 1999). This
process is thought to have caused rapid uplift of the Tibetan
plateau 8 Myr ago (Harrison et al. 1992; Molnar et al. 1993),
and has been inferred for other mountain belts (Houseman &
Molnar 1997; Platt & England 1994; Platt et al. 1998).
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(b) Convective Removal of Mantle Lithosphere
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Figure 1. Cartoons showing (a) horizontal shortening and thickening of the lithosphere, including its mantle portion. Mechanical thickening
should enhance the gravitational instability of the cold, dense, mantle lithosphere with respect to the hot asthenosphere below. If the mantle
lithosphere is made sufficiently unstable, its lower portion may be removed in a localized convective downwelling, drawn in (b). Removal of
mantle lithosphere and its replacement by hot asthenosphere could result in rapid uplift at the surface. Shown on the right in both (a) and (b) is
output from a numerical experiment that shows the generation of convective instability by mechanical thickening of a cold, dense layer. Here
arrows represent velocity and show horizontal shortening of the central region in (a) and a faster flow associated with convective downwelling in (b).
Temperature, represented by shades of grey (colder is darker) and contours (evenly spaced temperature intervals), clearly shows the removal of the

cold layer’s basal portion.

The gravitational instability of mantle lithosphere can be
enhanced by thickening in several ways. First, thickening
increases the amount of dense, potentially unstable material
in a thickened region (e.g. Conrad & Molnar 1999; Fleitout
& Froidevaux 1982; Houseman et al. 1981). Second, if litho-
spheric rocks deform by a non-linear stress—strain relationship,
as they are observed to do in laboratory experiments, the strain
rates associated with shortening should decrease the back-
ground strength of the lithosphere and enhance its gravitational
instability (Molnar et al. 1998). Finally, non-uniform thicken-
ing generates large variations in the lithosphere’s stratified
temperature field, allowing gravitational instability to grow
from accompanying variations in the density field. If viscosity is
non-Newtonian, the strain rates associated with the growing
instability decrease the lithosphere’s strength and cause the
instability to grow more rapidly. This process accelerates into a
rapid removal of the lithospheric base (e.g. Canright & Morris
1993; Conrad & Molnar 1999; Houseman & Molnar 1997).

These mechanisms of promoting gravitational instability
of the lithosphere have been studied by approximating the
convective instability as a Rayleigh-Taylor instability, in which
diffusion of heat is ignored. Thermal diffusion, however,
smoothes perturbations to the lithosphere’s stratified temper-
ature field, and thus may retard, or even prevent, their growth
as part of convective instability. Conrad & Molnar (1999)
addressed this issue by including the stabilizing effects of thermal
diffusion for a generalized density and viscosity structure.
These authors, however, studied instability only in layers that
were already convectively unstable, and considered horizontal
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shortening only as a mechanism that allows the lithosphere to
thicken into an unstable state. The role of horizontal shorten-
ing in making lithosphere unstable was treated more fully by
Molnar et al. (1998), but their studies did not include thermal
diffusion. Thus, an analysis of the full convective instability for
a layer that is undergoing horizontal shortening is needed.

The numerical experiments described below, which are similar
to those exemplified in Fig. 1, simulate mantle lithosphere that
eventually becomes convectively unstable because it thickens.
I compare the deformation that results to the unstable growth
predicted by simpler studies of the Rayleigh-Taylor instability
for different rheologies (e.g. Conrad & Molnar 1997, 1999;
Houseman & Molnar 1997), undergoing horizontal shortening
(e.g. Molnar et al. 1998), and in conjunction with thermal
diffusion (e.g. Conrad & Molnar 1999). The rheological con-
ditions and magnitudes of shortening rates that generate the
various types of gravitational instability can then be deter-
mined in a general way using a dimensionless scaling analysis,
as can the approximate time-dependent behaviour of a growing
instability. Finally, I attempt to determine how much material
may be removed by convective instability in a thickening
environment, and the effect of this removal on the remaining
lithosphere. As a result, this study treats the full convective
instability of thickening mantle lithosphere more completely
than do previous analyses. Because they build upon pre-
viously developed scaling analyses for various aspects of the
full problem treated here, these results are comprehensive, but
easily applied to gravitationally unstable layered structures such
as the mantle lithosphere.
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REVIEW OF RATES FOR UNSTABLE
GROWTH

The convective stability of a thickening cold thermal boundary
layer can be studied by observing the behaviour of small per-
turbations to the boundary layer’s stratified temperature field.
Various timescales are associated with different mechanisms
that promote the growth or decay of these perturbations.
The first growth mechanism is the shortening process itself,
which advects cold material downwards as the layer thickens,
and therefore amplifies perturbations to the temperature field
(e.g. Bassi & Bonnin 1988; Fletcher & Hallet 1983; Ricard &
Froidevaux 1986; Zuber et al. 1986). Two types of growth are
associated with the gravitational instability of a dense fluid
overlying a less dense fluid, also known as a Rayleigh-Taylor
instability. If the viscosity of the deforming fluid is independent
of strain rate, perturbations initially grow exponentially
with time (e.g. Chandrasekhar 1961; Conrad & Molnar 1997;
Whitehead & Luther 1975). For non-Newtonian viscosity,
growth is super-exponential with time (e.g. Canright & Morris
1993; Houseman & Molnar 1997). Finally, the lithosphere’s
density field is perturbed through temperature, which is subject
to thermal diffusion. Thermal diffusion smoothes temperature
variations and thus diminishes the amplitude of density per-
turbations, slowing, or even preventing, their unstable growth
(e.g. Rayleigh 1916).

The complete convective instability of a thickening boundary
layer with non-Newtonian viscosity can thus be ideally described
as the simultaneous action of (a) mechanical thickening,
(b) exponential followed by (c) super-exponential growth of
perturbations, and (d) thermal diffusion acting to suppress
growth. Each mechanism operates with a characteristic time-
scale that depends on the size of the perturbation itself and on
the physical properties of the layer. In general, one of the four
mechanisms has a dominant influence on the behaviour of
perturbations because it induces growth or decay of pertur-
bations at significantly faster rates than do the others. In
what follows, expressions for these growth or decay rates are
developed. These expressions are later used to construct dimen-
sionless parameters that compare the relative importance of the
different mechanisms in deforming a given thermal boundary
layer that is undergoing horizontal shortening.

Exponential growth

If thermal diffusion is ignored, perturbations to an unstable
density structure grow in a manner that can be described by an
analysis of the Rayleigh—Taylor instability. In this analysis, it is
useful to describe deformation of a fluid by a strain rate, &
defined in terms of the components of velocity, u;:

. 1 aui é‘uj

The flow field is incompressible, meaning that é;;=0. In a highly
viscous fluid, gravitational body forces are balanced by viscous
stresses associated with flow. This flow, described by the strain
rate, is related to the deviatoric stress, 7;;, by

The effective viscosity, n, can vary with temperature and may
depend on strain rate,
B i1
et 3
=5 3)
where B is a rheological parameter, n is a power-law exponent
and E*=(1/2) Yi; &+ &; is the second invariant of the strain-
rate tensor. Dislocation creep of olivine in the lithosphere is
often described using eq. (3) and n about 3.5 (e.g. Kohlstedt
et al. 1995).

For Newtonian viscosity (n=1), n=B/2 is a constant. In
this case, perturbations to an unstable density structure grow
exponentially with time (e.g. Chandrasekhar 1961; Conrad &
Molnar 1997). Thus, if Z is the magnitude of a sinusoidal
perturbation of wavelength 4, and w=dZ/dt is its downward
speed, both obey
dw dz
% =qw and i =qZ, 4
where ¢ is the exponential growth rate.

Conrad & Molnar (1999) non-dimensionalized time and
length according to

pgaToh

[/ZIWFI and Z/Zi, (5)
where p is the mantle density, « is the thermal expansivity, g is
the gravitational acceleration, Ty is the temperature difference
across the layer, /i is the thickness of the unstable layer and
Nm 1s the Newtonian viscosity at the base of the layer. The
parameter Fy is a constant that accounts for the temperature
dependence of viscosity, termed the ‘available buoyancy’ by
Conrad & Molnar (1999), who showed that F; is given by
the integral through the layer of the thermal buoyancy divided
by the viscosity. Because colder portions of the layer are also
stronger, the ‘available buoyancy’ scaling quantifies the portion
of the total buoyancy that is sufficiently weak to participate in
the gravitational downwelling. Thus, the scaling of time given
by eq. (5) applies for cold layers with Newtonian viscosity, and
arbitrary dependence of viscosity on temperature.

Using eq. (5) to non-dimensionalize eq. (4) yields an
expression for a dimensionless growth rate ¢, which can be
related to the dimensional growth rate, ¢, according to

pgoToh
q=——"

B Fid (©)

Using numerical experiments, Conrad & Molnar (1999)
measured a maximum value of ¢’~0.2 for dimensionless wave-
lengths close to A'=A/h=4. The combination of eqs (4) and (6)
provides an estimate of the downward speed at the bottom of a
perturbation growing exponentially with time:

dZ  pgaToh

W= —

e~ 2y

FqZ, (@)
m

where the subscript of wy refers to the value of the power-law
exponent, n=1.

If viscosity is non-Newtonian (n> 1), #,, decreases as strain
rates increase, as shown by eq. (3). For a dense layer under-
going horizontal shortening, strain rates are associated with
both horizontal shortening and unstably growing perturbations.
For sufficiently small perturbation amplitudes, the strain rates
due to shortening are greater and thus determine the effective
viscosity of the dense layer. As long as this viscosity remains
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constant, perturbations grow exponentially with time and with
growth rate given by eq. (6), where the viscosity is given by
eq. (3). Once strain rates associated with the growing pertur-
bation begin to dominate those due to shortening, the effective
viscosity is affected and growth proceeds super-exponentially.
Thus, as suggested by Conrad & Molnar (1997) and confirmed
by Molnar et al. (1998), perturbations may grow exponentially
with time even if viscosity is non-Newtonian, but only if their
amplitude is sufficiently small.

Super-exponential growth

An increase in the amplitude of a growing perturbation causes
an increase in strain rates, and thus a decrease in the effective
viscosity of a non-Newtonian fluid (n>1). This decrease in
viscosity causes a density instability to grow super-exponentially
with time (e.g. Canright & Morris 1993; Houseman & Molnar
1997). By approximating E ~ w/h, Houseman & Molnar (1997)
obtained an expression for the time-varying viscosity using
eq. (3). This leads to an expression for the downward speed, w,,:

_dZ _ (C\" (pngaTo\” "
W”_E_(n> < B >/1FnZ s (8)

where F,, is the ‘available buoyancy,” which depends on » and
the depth dependence of B, B, is the value of B at the base
of the unstable layer and C is a dimensionless measure of the
rate of growth (Conrad & Molnar 1999). Notice that when
n=1, eq. (8) reduces to (7) and C is equivalent to ¢'. For n=3,
measurements of C for different dependences of B on T differ
from 0.45 by about 20 per cent (Conrad & Molnar 1999).

Following Houseman & Molnar (1997), Conrad & Molnar
(1999) suggested non-dimensionalizing distance and time
according to

n
=t (pggTOh) Fn and 2= = % , (9)

where double primes indicate a non-dimensionalization of
time for super-exponential growth. Solving for w,, in terms of ¢”
yields

_ (=)
Wl = [C (”n—l) (t — z”)} , (10)

which indicates super-exponential growth (Houseman & Molnar
1997). Here t{; is the dimensionless time at which speed becomes
infinite and the instability must be detached from the dense
layer. By integrating eq. (10), Houseman & Molnar (1997)
showed that

. n nZ(l)(lfn)
6=(¢) n—1)° an

where Zj is the perturbation’s initial amplitude.

Horizontal shortening

Horizontal shortening of a layer generates thickening and
causes the base of the layer to descend with a speed w,=dh/dt.

Incompressibility requires ., = —é..=wy/h, giving
dh . dws .
Ws = i Exch and 7 ExxWs . (12)
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A comparison to eq. (4) shows that eq. (12) is an expression for
exponential growth. In this case, however, it is not the pertur-
bation amplitude Z that grows exponentially with time, but the
thickness of the entire layer 4. The ‘growth rate’ in this case is
simply é.-

Diffusion of heat

The cooling of a boundary layer generates the negative
buoyancy that drives convective instability. Conductive cool-
ing of a half-space, appropriate for the cooling of oceanic
lithosphere, yields a temperature profile given by an error
function:

T(z)=Ts+ Ty erf(—z/h), where h=2/xt. . (13)

Here ¢, is the time during which the half-space has cooled (e.g.
Turcotte & Schubert 1982, pp. 163-167) and T is the surface
temperature. The rate at which an isotherm at depth / descends
can be easily determined by taking the time derivative of /:

i _

K 2K
}Vd,v = dt = —

where the subscripts d, v denote diffusion in the vertical
direction.

Diffusion of heat also smoothes, and thus diminishes, the
horizontal perturbations in temperature from which instability
must grow (e.g. Conrad & Molnar 1997, 1999). Consider
perturbations to the background temperature field of the
form AT~cos(kx), where AT is the temperature pertur-
bation, k=2n/A is the wavenumber and x is the horizontal
distance. The horizontal temperature field is subject to the heat
conduction equation

OAT PAT

ot =K< ox? ) : (15)
where x is the thermal diffusivity (e.g. Turcotte & Schubert
1982, p. 154). Perturbations decay exponentially with time as
OAT 4n?
e =

ot 52
The wavelength, 7, should scale with the thickness of the layer,
h. In addition, the amplitude of a perturbation to an isotherm,
Z, should be linearly related to the amplitude of horizontal
temperature variations, A7. Ignoring constants, horizontal
thermal diffusion then generates a characteristic rate of

1 dz KZ
Wd h = ar ~ = T2

AT. (16)

)

where the negative sign indicates a diminishment of perturbation
amplitudes with time.

NUMERICAL EXPERIMENTS

Numerical experiments, similar to those performed by Conrad
& Molnar (1999), can be used to search for the conditions
under which each mode of deformation is dominant. I use
the finite element code ConMan, which can solve the coupled
thermal diffusion and incompressible Navier—Stokes equations
for high Prandtl number (King et al. 1990). Convective instability
is initiated by imposing a temperature field as in eq. (13).
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With an assigned thermal expansivity o, colder fluid is denser
and flows downwards into the underlying warm fluid as the
instability grows. Perturbing eq. (13) by applying

h(x)=2\/klc\/1+pcos 2nx/7) (18)

where p is a constant that specifies the perturbation amplitude,
initiates unstable growth. This corresponds to a sinusoidal
variation in 7., which imposes a smooth perturbation.

The finite element grid has a depth of 8.274 and a width
of A'12=2.07h. Perturbations with this wavelength grow most
rapidly (Conrad & Molnar 1999), and thus should reflect the
unstable growth that occurs in a system initially perturbed at all
wavelengths. The grid consists of 54 elements in the vertical
direction, with 36 elements in the upper half of the box, giving
double resolution in the region where most of the deformation
occurs. 18 elements in the horizontal direction make each
element in the upper half of the box square. This resolution is
coarser than that used by Conrad & Molnar (1999), but tests
show that measurements of growth rate are only changed by
a few per cent. Similarly small changes in growth rate are
measured in tests with finer time-step resolution. Following
Conrad & Molnar (1999), the length of a time step is chosen
to be one-tenth that of the dynamically determined Courant
time step.

Horizontal shortening is generated by imposing horizontal
velocity boundary conditions along the vertical and top surfaces
of the box. Specifically, the left side of the box has zero
horizontal velocity, and a horizontal velocity of —v is imposed
along the right boundary. On both sides, free slip in the vertical
direction is permitted. Along the top surface, the imposed
velocity is zero in the vertical direction, and has a horizontal
component that tapers linearly from zero on the left to —v
on the right. These boundary conditions set up a flow that
allows the dense surface layer to thicken according to eq. (12),
where é,,=2v/]. Horizontal shortening could also have been
implemented by imposing forces, instead of velocities, on the
sides of the box. Although this method more closely resembles
lithospheric shortening, which probably involves external forces
acting on strong surface plates, it does not specify the location
or the rate of thickening, making the resulting deformation
more difficult to analyse. In this work, the pattern of shorten-
ing is imposed by the velocity boundary conditions, and an
assumption is made that external forces could generate this
pattern if present. Finally, no stress boundary conditions are
imposed along the bottom boundary so that material is not
constrained to circulate within the box, which could impede the
flow. The box is sufficiently deep, however, that the sinking
boundary layer does not begin to feel the bottom of the box as
it detaches from the surface layer. Conrad & Molnar (1999)
found that, at least initially, a no-stress bottom boundary
condition does not affect unstable growth compared to a free-
slip condition there. Once cold downwelling approaches the
bottom of the box, however, the no-stress condition permits
cold fluid to flow out of the box with no resistance. The effects
of this flow are discussed below.

Viscosity is non-Newtonian, as described by eq. (3), with
power-law exponent n=3. Following Conrad & Molnar (1999),
B varies with temperature according to

B(T)=Bn, exp(ln(r) TmT* T) , (19)
0

where the parameter r is the total variation in B across
the fluid’s temperature range and T, is the temperature of the
underlying fluid. Thus, B(Ty,) =By, and B(Ty= Ty, — To) =rBy,.
The temperature dependence of viscosity is altered by varying r.

A COMPARISON OF RATES FOR
UNSTABLE GROWTH

A dense layer of non-Newtonian fluid that is undergoing hori-
zontal shortening should exhibit time-dependent behaviour that
can be described predominantly by one of the above-mentioned
modes of deformation. Two of these modes, uniform thicken-
ing of the layer and diffusion of heat in the vertical direction,
influence the layer’s vertical temperature structure. The rate of
uniform downwelling for isotherms at the bottom of a layer
experiencing one of these processes is given by ws or w,,, as
defined in eqs (12) and (14). Three processes, exponential
growth, super-exponential growth and horizontal diffusion
of heat, operate on perturbations to the layer’s stratified
temperature structure. For each of these modes operating
independently, the downward speeds of perturbed isotherms
near the bottom of an unstable temperature structure are wy, ws
and wy, as defined in eqs (7), (8) and (17). In general, all five of
these mechanisms should operate simultaneously at different
rates, but typically one mode dominates the deformation of
a cold, dense layer by causing the layer’s isotherms to move
most rapidly. Because the above speeds depend on the material
properties of the layer, the shortening rate and the amplitude
of the perturbations to the layer’s temperature structure, the
dominant mode should also depend on these quantities, and
may change with time as perturbations grow.

In what follows, a series of numerical experiments are used to
determine the dominant mode of deformation for various
combinations of the relevant parameters. In these experiments,
the downward speed of the 7"=0.9 isotherm is measured at
the location of maximum downwelling for cold layers with a
variety of viscosity structures, initial perturbation amplitudes
and imposed shortening rates. To apply these experiments
generally, dimensionless numbers are constructed by taking
ratios of various combinations of the expressions for speed
given above. The numerically determined set of parameter
values for which a given mechanism deforms isotherms most
rapidly can then be expressed as ranges of these dimensionless
numbers. Thus, each deformation mechanism is dominating
in its own region of dimensionless parameter space, and the
boundaries between these regions define ‘critical’ values of the
dimensionless parameters. To determine the dominant mode of
deformation for any given layer that is undergoing shortening,
one needs only to estimate values for the dimensionless numbers
defined below, and then compare these values to the measured
‘critical’ values. A summary of the various dimensionless
parameters and their critical values is given in Table 1.

Convective instability: unstable growth and thermal
diffusion

By studying a layer that is not undergoing horizontal shorten-
ing, Conrad & Molnar (1999) determine the basic requirements
for convective instability. Their analysis recognizes that hori-
zontal thermal diffusion causes perturbations to an unstable
temperature structure to decrease in amplitude with speed w,
given by eq. (17). If viscosity is effectively Newtonian (n=1),
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Table 1. Summary of dimensionless quantities (for n=3).

Description of dimensionless quantity

Critical values and dominant mode of growth

Toh?
Ra] :—pgx 0 F]éi{g

K m -
Compares exponential growth

and thermal diffusion

3,372
pmgocT()) nwz
Raz= F:

3 ( 3By K 3

Compares super-exponential
growth and thermal diffusion

pe byl
K
Compares mechanical thickening

and thickening due to cooling

Ray 3B 2F1 2/3
— =3 — &L
Ras pgaToZ) F3 ¥

Compares exponential growth
and super-exponential growth

, Ray :pgaToh Fé=l3

z :
P B, ®

Compares exponential growth
and mechanical thickening

Ra; > 100 exponential growth
Ra; < 100 no growth

Raz > 100 super-exponential growth
Raz < 100 no growth

Applies if Ra; <100 and Ra; <100
P> 1 mechanical thickening

P <1 thickening due to cooling

Applies if Ra;>100 or Ra;>100

R .
=a < 2 super-exponential growth
Ra3

R
20 < 100 exponential growth
Ras

Ray > 100 mechanical thickening
Rll3

Applies if Ra;>100 or Raz>100

R
z % < 0.5 mechanical thickening

R .
0.5<Z % < 5 exponential growth

R .
z' % > 5 super-exponential growth

exponential growth causes fluid to move downwards with speed
wy given by eq. (7). The ratio of these two speeds yields a
dimensionless number that is analogous to the Rayleigh number
used in thermal convection because it measures convective
instability, in this case for a thermal boundary layer:

_ pmgaToh? P

2 Wan 20)

Ra; 1 ,
Mm Wd.,h

where the constant ¢’ is ignored in the definition of Ra.
If viscosity is non-Newtonian with power-law exponent n,
the downward speed is given by w,, in eq. (8). In this case, the
relevant dimensionless ‘Rayleigh’ number becomes

To\" 3 Zn— 1
Ra, = (%) el i @1
nbmy K Wd,],

Note that if n=1, Ra, becomes Ra;.

Whether perturbations grow unstably or are damped by
thermal diffusion depends on the relative values of w, and w,,,
and thus on the parameter Ra,. A large value of Ra, means that
W, > W, and unstable growth should dominate. To determine
the ‘critical’ value of Ra, above which a cold boundary layer
becomes convectively unstable, Conrad & Molnar (1999)
measured the downward speed of material with a temperature
of T'=TI/Ty=0.9 (near the base of the layer) as a function of
time in a series of numerical experiments similar to those
described above, but using é,,=0. For n=1, the initial slope of
a plot of In w’ versus #’, made dimensionless using eq. (5), gives
the dimensionless exponential growth rate, ¢'. Similarly, if n>1,
a plot of w”"~?3 versus ¢”, where time is non-dimensionalized
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according to eq. (9), should have a slope of —C(n—1)/n, as
shown by eq. (10). Varying the viscosity #,,, or the viscosity
coefficient B, if n>1, allows the growth rates ¢’ or C to be
determined as a function of Ra; or Ra,,.

Numerical experiments (Conrad & Molnar 1999) show that
for large Ra,, growth occurs with dimensionless growth rates
close to ¢’'~0.2. If, however, Ra; <1000, measured values of ¢’
are less than 0.2, and for Ra; <100 they become negative.
Negative values of ¢’ indicate that perturbation amplitudes are
diminished by the diffusion of heat faster than they can grow.
Results are similar for n=3, where C~0.45 for Raz>1000 and
negative for Ra; <100. Thus, the ‘critical’ value of Ra, is about
100, at least for n=1 and n=3. If Ra,> 100, unstable growth
occurs; otherwise, the layer is stable to convection.

Horizontal shortening and thermal diffusion

Now consider a layer of fluid with non-Newtonian viscosity
and large B such that Raz> 100, and that thickens due to an
imposed horizontal strain rate é,,. As described above and by
Conrad & Molnar (1999), such a layer should be convectively
stable, so that any heat transfer must be due either to advection
by the imposed horizontal shortening or to thermal diffusion.
Horizontal shortening causes the bottom of a layer to descend
with velocity wg, as shown by eq. (12). Isotherms also grow
deeper due to cooling from above, at a rate given by eq. (14)
as wg,. The ratio of these two rates yields a dimensionless
quantity defined here as P because it is similar to a Peclet
number, which compares rates of advective and diffusive heat
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transport:
b W
P="" (22)
K Wd

where the factor of 2 is omitted for simplicity. If P is large,
boundary layers thicken due to horizontal shortening, but if P
is small, they thicken by cooling.

The ‘critical’ value of P for which the transition between
these two types of thickening occurs is determined by first
measuring the downward velocity, w, of the 7°'=0.9 isotherm as
a function of time for many different values of P. Thickening of
the layer by horizontal shortening alone causes dimensionless
velocity and time to be related according to

"

w
M}m(t/// _ 0)

which is obtained by integrating the expression for dwg/dt in
eq. (12) and where triple primes indicate a non-dimensionalization
of time using the strain rate. According to eq. (23), a plot of
In(w™) versus ¢”, where w" is the downward speed of the 7'=0.9
isotherm, should have a slope of unity if shortening is dominant.
The measured value of this slope is a dimensionless ‘growth rate’
that is termed ¢ here. For a layer undergoing sufficiently rapid
shortening that P is greater than about 10, measurements of ¢"”
are close to unity (Fig. 2), which is consistent with uniform
thickening. Because these measurements are for a layer that is
convectively stable (Ra, < 100), thickening alone must dominate
for P>10.

For P less than about 1, ¢” increases with decreasing P
(Fig. 2), which indicates that growth occurs more rapidly than
would be expected for a layer experiencing only mechanical
thickening. This is because, for sufficiently small P, horizontal
shortening is slow enough that isotherms move downwards
more rapidly due to cooling than they do because of thickening.

"
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Figure 2. Plot of the initial dimensionless ‘growth rate,” ¢” = ¢g/é ., as
a function of P, which is varied by varying ¢.,. Theory predicts ¢”" ~ 1
if horizontal shortening thickens the layer fastest (observed for P>10)
and ¢”~2/P (thin solid line) if isotherms deepen due to cooling
from above (observed for P<1). At sufficiently small P, horizontal
thermal diffusion leads to ¢”’ <0 (see text). Growth rates are calcu-
lated as described in the text for a set of parameters that yield
Ray=26 000Z*F;. The maximum value of Ras is then 0.7 for
Z5=9.54 per cent and r =10. The maximum value of Ra; is 0.7 for this
same curve at P~10% Thus, the layer should only be affected by
horizontal shortening and thermal diffusion because both Ra; and
Raj; are below their critical values for convective instability.

Because the velocity of the fluid at the location of a given
isotherm is measured and not the vertical motion of the iso-
therm itself, the measurement of w”’ is still that of the thicken-
ing layer, given by eq. (12), where / is the depth of the given
isotherm. This velocity measurement increases with time, how-
ever, because isotherms move downwards due to cooling
according to eq. (14), causing w” to be measured at increasingly
deeper locations within the fluid, locations where the fluid
velocity given by eq. (12) is greater. The measured value of the
downward speed thus changes with time according to

dw _0woh . 2k 2k
@ TR
where eq. (12) gives 0w/0h and eq. (14) gives dh/0t. By analogy
to eq. (4), eq. (24) is an expression for exponential growth with
growth rate ¢=2x/h*. When made dimensionless using é.,,
this growth rate can be simplified to ¢”’=2/P. This relation
approximates the measured values of ¢;” for P<1 (Fig. 2),
meaning that vertical thermal diffusion dominates in this range.

At small values of P, measured growth rates become negative
(Fig. 2). This occurs because the layer is convectively stable
(Ra; <100 and Raz < 100), so that horizontal thermal diffusion
causes perturbation amplitudes to decrease with time. If hori-
zontal strain rates, expressed by P, are sufficiently small, this
leads to negative measurements of the growth rate, as Conrad
& Molnar (1999) found for convective instability.

24

Convective instability and horizontal shortening

A layer undergoing horizontal shortening may also deform
due to gravitational instability. If Ra3;>100, perturbations
grow super-exponentially with time, at least after the effective
viscosity is governed by strain rates associated with the growing
instability. If background strain rates are larger than those
induced by the instability, however, horizontal shortening
induces a background Newtonian viscosity given by eq. (3) that
should promote initially exponential growth (Molnar et al
1998). For still larger imposed strain rates, uniform thickening
may overwhelm either the exponential or the super-exponential
growth associated with gravitational instability.

A transition from super-exponential to exponential growth
of perturbations is thus expected at some imposed background
strain rate. The downward speed of a perturbation growing
super-exponentially is given by eq. (8) if =3 and should
be independent of é,.. The downward speed associated with
exponential growth is given by eq. (7) and increases with §23
because the effective viscosity given by eq. (3) for n=3
is proportional to é.,2>. The ratio of these two speeds is
proportional to the ratio Rai;/Ra; and is given by

2
Ray _5( 3B N hipn w1 (25)
Ras pgoToyZ) Fz ™ w3

Thus, large values of ¢, create large Ra;/Ras, which favours
exponential growth. Conversely, if ¢, is small, perturbations
should grow super-exponentially.

Both types of growth can be demonstrated by plotting
In (w'), where w’ is the dimensionless downward speed of the
T'=0.9 isotherm, as a function of the dimensionless time, #’. As
discussed above, if growth is exponential, this curve should
be linear, with slope equal to the dimensionless exponential
growth rate, ¢’. For Ra;/Ra;=10 the approximately linear
initial relationship between In (w’) and ¢/, with an initial slope
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Figure 3. Plot of In w’, where w' is the downward speed of the 7'=0.9
isotherm, versus ¢ [non-dimensionalized using eq. (5) for exponential
growth]. Shown are curves for two choices of Ra;/Raz and for r=100 and
Z,=9.54 per cent. For Ra;/Ra;=10, the initially linear relationship
indicates exponential growth with ¢’ close to 0.2, the value measured by
Conrad & Molnar (1999). For Ra;/Raz=1, the ‘instantaneous’ growth
rate, as measured by the slope of the curve, increases with time. Two
methods for measuring the initial instantaneous growth rate, ¢, are
shown. A linear fit to the first 10 data points (thick solid line) produces a
measurement of ¢ that is too large, but the initial slope of a quadratic fit
to the first 20 data points (thin solid line) yields a value that is consistent
with predictions made assuming super-exponential growth (see text).

of 0.19 (dashed line, Fig. 3, measured by a linear fit to the
first 10 points), agrees with measurements of ¢'~0.2 made
by Conrad & Molnar (1999) for Newtonian viscosity if
Ra;>100 Thus, for Ra;/Raz;=10, a perturbation initially
grows exponentially with time. Later, the slope of this curve in
Fig. 3 increases, presumably because super-exponential growth
begins to become important.

For Ra;/Raz=1, a plot of In (w’) versus ¢ does not include an
initially linear segment, but instead the slope rapidly increases
with time (Fig. 3). Growth in this case is super-exponential
and the slope of In (w’) versus ¢ gives a measurement of
the ‘instantaneous’ growth rate at a given time. The above
theory predicts the value of this growth rate for a given per-
turbation amplitude. Taking the time derivative of eq. (8), non-
dimensionalizing using the timescale for exponential growth in
eq. (5), and then simplifying using the definitions of Ra; and
Ra,, in eqs (20) and (21) yields

Ra,
— =nC" - 2
ar nC Ray w (26)

Thus, the initial ‘instantaneous’ slope of a plot of In (w')
versus t', denoted here as gg, should be equal to nC"Ra,/Ra,.
For Raj;/Ra;=1, a linear fit to the first 10 data points gives
¢0=0.51 (Fig. 3, thick solid line). This value is nearly double the
predicted value of nC"Ra,/Ra; =0.27, calculated using C=0.45
(Conrad & Molnar 1999), but it is determined using a rather
crude method for fitting a tangent to a set points that are not
linear. Instead, measuring the initial slope of a quadratic fit to the
first 20 data points gives go=0.30 (Fig. 3, thin solid line), which is
within 12 per cent of the predicted value.

The transition from super-exponential to exponential growth
can now be found by observing how measurements of ¢,
depend on Ra/Ra; (Fig. 4). For large Ra,/Raz and exponential
growth, the measured initial slope should be constant and equal
to go~0.2 (Fig. 4) (Conrad & Molnar 1999). Although these

dwy,
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Figure 4. Plot of the initial dimensionless growth rate, go, as a
function of Ra,/Ras. Here g is measured as shown in Fig. 3 using a
linear fit to the first 10 data points of the curve In w’ versus #’. The
smallest value of Ra; is 770 for the Z,=4.88 per cent and »=1000
curve, meaning that the layer is always potentially unstable to super-
exponential growth. This type of growth is observed for small strain
rates that produce Ra;/Ras <2, where theory (see text) predicts super-
exponential growth with initially ¢o=nC"Ras/Ra; (thin solid line).
For Ra;/Raz>2, qo~0.2, as predicted for exponential growth. Thus,
for strain rates that are large enough to produce Ra;/Ra;>2, the
background viscosity of the layer is reduced sufficiently so that
density perturbations grow unstably and exponentially with time. The
grey stars correspond to the measurements made in Fig. 3.

measurements depend somewhat on perturbation size and begin
to increase with increasing strain rate for Ra;/Ra;>100,
measured values of ¢gy~0.2 are evident for 2 < Ra;/Ra; <100.
For small Ra,/Ras, super-exponential growth should dominate
even in initial stages. Indeed, for Ra;/Raz <2 the measurements
of ¢o follow the curve for nC"Ra,/Ra; (Fig. 4), as predicted
by eq. (26). These measured values are systematically larger, by
about a factor of two, than the predicted values. As found for
a single example in Fig. 3, this discrepancy is due to the fact
that a linear fit to the first 10 velocity measurements yields an
overestimate of their true initial growth rate if growth is super-
exponential. A linear fit is employed even for super-exponential
growth, however, in order to maintain a method for measuring
qo that is independent of Raj/Ras;. Thus, the change in the
dependence of ¢y on Ra/Raj in Fig. 4 can be attributed to the
transition between super-exponential and exponential growth,
which occurs for Ra;/Ra;~2. This value is independent of Zj
and the temperature dependence of B (Fig. 4).

At sufficiently rapid background strain rates, uniform thicken-
ing of the layer occurs faster than the gravitational instability
grows. Thus, another transition, this one from exponential
growth to uniform thickening, should occur as strain rates
increase. Again, this transition can be found by first taking
the ratio of the speeds for mechanical thickening, wg, and
exponential growth, wy, which can be simplified to
Wi Ra 1 ,
ws P Zo. @7
Thus, layers perturbed with different amplitudes should experi-
ence a transition from exponential growth to thickening at
different values of Ra,/P.

To see where thickening becomes important, measurements
of qo, the ‘instantaneous’ initial growth rate discussed above,
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Figure 5. Plot of the initial dimensionless growth rate, g;, made
dimensionless using eq. (5), as a function of ZyRa,/P. The results
for which ZyRa,/P>5 are the same as those for which Ra;/Ray;<2
in Fig. 4, where they are attributed to super-exponential growth.
Theory predicts (see text) that if growth is controlled by horizontal
shortening, ¢o=P/Ra,. This is observed for ZyRa,/P <0.5 (compare
to thin solid lines). For 0.5<ZyRa;/P <5, a mixture of horizontal
shortening and exponential growth causes growth rates to increase
towards ¢ =0.2, the value expected for exponential growth. The grey
star corresponds to a measurement made in Fig. 6.

are plotted a function of ZyRa,/P (Fig. 5). If shortening is the
most important growth mechanism, the downward speed at
the base of a layer is given by wy in eq. (12). Taking the time
derivative of eq. (12), non-dimensionalizing using eq. (5), and
simplifying using the definitions of Ra; and P in eqs (20) and
(22) yields
‘z: = R% w. (28)
Thus, if the layer grows only by thickening, ¢o=P/Ra.
Measured values of gy behave in this way for ZyRa,/P<0.5
(Fig. 5) for the three different initial perturbation amplitudes.
For ZyRa,/P>0.5, measured growth rates trend towards ¢’ ~0.2.
For small initial perturbations such as Z5=0.01, growth rates
may be smaller than ¢'~0.2 even for ZyRa,/P>0.5 (Fig. 5),
indicating that horizontal shortening still influences growth.
The transition between exponential and super-exponential
growth, determined from Fig. 4 to occur at Ra;/Ras;~2, can
also be represented in terms of ZyRa;/P and observed in Fig. 5.
By solving for the strain rate at which Ra;/Ras ~2 and inserting
this expression into the definition of ZyRa,/P given in Table 1,
it is possible to rewrite Ra;/Ras~2 as ZoyRa,/P~3.67F\/F\/F;.
Using the values of F; and F5 given by Conrad & Molnar
(1999), the transition from exponential to super-exponential
growth can be estimated to occur at ZyRa;/P ~ 5. This transition
is evident in Fig. 5, and is, coincidentally, nearly independent
of the temperature dependence of B across the layer.

Summary

Three dimensionless quantities, Ra,, Ra, and P, together with
the initial dimensionless perturbation size, Zy, can be used
to determine the mode of deformation that occurs in a cold
thickening boundary layer with non-Newtonian viscosity and
power-law exponent n=3 (Table 1). If Raz> 100, the instability
may grow super-exponentially, but only if imposed strain rates,

é+v, are small enough that Ra;/Raz<?2 (Fig. 4), or alternatively
ZoRa,/P>5 (Fig. 5). If the imposed strain rate is large enough
that ZyRa,/P<0.5 (Fig. 5), or alternatively Ra;/Raz>100 (Fig. 4),
mechanical thickening of the layer dominates the downward
advection of isotherms (Fig. 5). Intermediate imposed strain
rates lead to exponential growth of perturbations, as long as
Ra,>100.

TRANSITIONS BETWEEN MECHANISMS
OF INSTABILITY

The dimensionless quantities Ra;, R3 and P depend on the layer
thickness /4, and thus increase as the layer thickens with time.
The measure of instability Ra; also increases as gravitational
instability grows because it depends on the perturbation ampli-
tude Z. As a result, an unstable layer should experience
transitions between different types of deformation as increases
in & and Z cause Ra;, Raz and P to encounter the ‘critical’
values described above and in Table 1.

As an example, consider convective instability at the base
of a layer perturbed initially with amplitude Z'=4.88 per
cent, r=100 and choices of ¢, and other parameters such that
Z'Ra/P~0.7. As noted in Fig. 5 and shown by a plot of In (w’)
versus ¢’ (Fig. 6a), such a layer undergoes a combination of
Rayleigh-Taylor growth and horizontal shortening such that

[6)]
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Figure 6. Plot of (a) In w’' and (b) the dimensionless quantities Z’,
Z'Ray/P and Ra,/Ras as a function of time [made dimensionless using
the timescale for exponential growth in eq. (5)] for a layer with initial
values of Raj;, Ra; and P of 800, 10 and 50, respectively, and for
r=100 and Z{,=4.88 per cent. The changes in slope in (a) suggest that
growth is initially dominated by the imposed thickening, then by
exponential growth of perturbations, and then by super-exponential
growth of these perturbations. The transitions between the various
types of growth are approximately predicted by the values of Z’,
Z'Ray/P and Ra,/Ra; in (b) passing critical values that are indicated as
changes in slopes in Figs 4 and 5.
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¢'=0.12, where time is made dimensionless using eq. (5). This
value is smaller than the value of ¢’ ~0.2 appropriate for purely
exponential growth. As discussed above and shown in Fig. 5,
however, ¢'<0.2 for initial perturbation amplitudes that are
sufficiently small because shortening still influences growth.
Thus, in the example shown in Fig. 6(a), isotherms are initially
advected downwards in part by uniform thickening of the
layer.

As the perturbation amplitude Z’ increases with time due to
Rayleigh-Taylor growth, the quantity Z'Ra,/P also increases,
making deformation of the layer less influenced by mechanical
thickening (Fig. 5). In fact, the transition to exponential
growth occurs as the perturbation amplitude nears Z’'~ 10 per
cent and Z'Ra,/P nears 1.4 (Fig. 6b), seen also in the change
in slope near t'=2 (Fig. 6a). The new measured growth rate
of ¢'=0.26 is larger than expected for exponential growth.
Because the layer has thickened by about 30 per cent before
exponential growth becomes dominant, however, the thickness
h used in eq. (5) to make time dimensionless should be increased
by a factor of 1.3, making the value of 0.26 consistent with
the predicted dimensionless growth rate of ¢'=0.2 (Conrad &
Molnar 1999). When perturbation amplitudes become sufficiently
large that Ra;>100 and Ra/Rasz<2 (or Z'Ra,/P>5), super-
exponential growth of perturbations is faster than exponential
growth. This transition is evident by the acceleration of growth
that occurs for /> 6 (Fig. 6a), which is the time both Z'Ra;/P
and Ra;/Ras reach their predicted critical values of 5 and 2
(Fig. 6b).

Thus, for a thickening unstable layer, the dominant mode of
deformation progresses from exponentially increasing mech-
anical thickening to faster exponential growth of a gravitational
instability and finally to still faster super-exponential growth
of this instability. Depending on initial conditions, these three
types of deformation will evolve from one to the next as the
layer thickens and perturbations grow. The scaling analysis
developed above for an initially perturbed layer can be used to
predict the approximate time-dependent evolution of a thicken-
ing unstable layer that experiences transitions between different
styles of thickening and growth as it evolves.

THE EVOLVING THERMAL STATE OF
AN UNSTABLE LAYER

If mechanical thickening of mantle lithosphere generates con-
vective instability, the lithosphere’s low-viscosity basal portion
will be removed in an event whose time dependence is described
above. Previous studies of convective instability (e.g. Conrad &
Molnar 1999; Molnar et al. 1998) extrapolate the analysis for a
single downwelling event to the ongoing convective erosion of a
layer afterwards. Horizontal shortening at the surface, how-
ever, should persist even after the initial instability, and thus
should affect any continued downwelling that may occur. To
study the evolution of mantle lithosphere after its base has been
convectively removed, calculations similar to those described
above are extended for times beyond this initial event.

Additional numerical calculations

In the lithosphere, shortening, and therefore convective instability
caused by shortening, occurs at convergent zones between large
plates of nearly constant thickness. To consider durations
of convergence long enough to allow large finite shortening, I
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extend the width of the finite element grid to 6.20/%, three times
that used in the calculations above. The wider grid generates
instability further than the imposed boundary conditions that
generate shortening, and thus should diminish the influence of
these boundary conditions on the evolution of the shortening
region. Shortening is permitted only in the left one-third of the
grid by adding uniform velocity boundary conditions to the top
surface of the rightmost two-thirds of the grid. Thus, at the
surface, the horizontal velocity tapers uniformly from zero
to —v on 0<x'<2.07 and is equal to —v on 2.07 <x’<6.20.
Other boundary conditions are the same as those used above.

The imposed horizontal shortening causes the unstable layer
to thicken at a rate that can be expressed by P using eq. (22)
as a multiple of the thermal diffusion timescale. Perhaps a
more meaningful expression for the thickening rate is the time
for a layer’s thickness to increase by 100 per cent. In these
calculations, a doubling of layer thickness can be achieved by
collapsing a region of width 2L into a region of width L, which
corresponds to horizontal shortening of 50 per cent. If L is
the width of the shortening region and material is brought
into this region with velocity v, then the horizontal strain rate
is é,=v/L and 100 per cent thickening is achieved after a time
tioo=Llv=1/¢,. Using eq. (22), t;0o can be written in terms
of P,

1 W

hoo=F—=pc- (29)
Later, it will be useful to make time non-dimensional using
the timescale for exponential growth. Applying eq. (5) and
simplifying yields

r_ Ray
o=t (30)

Values for P and Ra; are given below so that t}oy can be
calculated using eq. (30).

16 calculations are performed, for four different temperature
dependences of viscosity, given by values of r of 1, 10, 100 and
1000, and for four different shortening rates, which yield values
of Pof 1.5, 4.8, 15 and 48. Because the stability parameter Ra,
depends on strain rate, as shown by eqs (20) and (3), layers with
larger values of P, and thus larger strain rates, have larger Ra,
and are convectively more unstable. To study layers that are
inherently stable when subject to low shortening rates, but that
become unstable when shortening rates increase, the strength
parameter By, is chosen so that a layer shortening with P=4.8
has a value of Ra; near the critical value of 100. Because
layers with larger r, and therefore smaller ‘available buoyancy’
parameter F, have a diminished tendency towards convective
instability (as shown by eq. 20), the chosen values of B, are
smaller for layers with larger r. Thus, despite differences in r,
layers are equally unstable at a given shortening rate. The
stability parameter Ra; is thus varied only by changing the
shortening rate, which is specified here by a change in P.

Because horizontal shortening is only imposed between x'=0
and 2.07, thickening in this region generates a perturbation to
the initially unperturbed error function temperature profile. This
perturbation then should grow unstably, either exponentially
with time if shortening is sufficiently rapid that Ra;> 100, or
super-exponentially with time once this perturbation becomes
large enough that Ra;>100. Either way, localized thickening
eventually leads to a perturbation that grows unstably. This
initial downwelling eventually removes the basal portion of the
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layer, as shown for r=100 by the locations of isotherms in
Fig. 7 (black lines). Typically, downwelling persists following
the initial removal event, and continues to remove both cold
material from the upper reaches of the surface layer and new
material that is brought in from the side. This downwelling
appears to be a permanent feature and eventually reaches a
steady state in which it removes all new cold material that is
brought in by the imposed horizontal shortening (Fig. 7, grey
lines).

The evolution of downwelling

To study the instability’s development over time, I record the
locations and downward speeds of the nine isotherms between

Figure 7. Profiles of temperature for a convective instability growing
from a thickening thermal boundary layer with temperature-dependent,
non-Newtonian viscosity for which n=3 and r=100. Only the left half
and the upper 60 per cent of the entire finite element calculation is
shown. Shown are isotherms for 7"=0.1-0.9, with colder temperatures
closer to the surface. Sets of isotherms for different shortening rates
are shown in (a)-(d), where the difference in shortening rates is
parametrized by P, but also affects Ra; by changing the background
viscosity of the layer. In each case, two times are shown, where time is
non-dimensionalized using the timescale for exponential growth given
by eq. (5). The dark contours show a time during the super-exponential
phase of the instability in which a ‘blob’ of material is rapidly
descending into the lower half-space. The light contours show the
instability at the end of the calculation, when cold material is flowing
downwards from the base of the instability at a nearly steady rate.

T'=0.1 and 7'=0.9 on the left side of the box, where the
instability is a maximum. I also record the depths of these
isotherms as they are advected into the right-hand side of the
box. The amplitude of the perturbation to each isotherm, Z’,
can be measured by taking the difference in an isotherm’s
depth between the left- and right-hand sides of the grid, and
then normalizing this quantity by the original depth of that
isotherm. To determine the fraction of the downward speed
that is not due to the initially imposed velocity field associated
with horizontal shortening, the initial speed of material con-
taining a given isotherm is subtracted from its measured value.
Because the layers are initially unperturbed, this initial speed
should result almost entirely from horizontal shortening. The
velocity that remains, termed w¢.,, here, must be associated with
either gravitational instability or the acceleration of mechanical
thickening beyond its initial rate (remember that w; in eq. (12)
grows exponentially with time).

A comparison of the expressions for w; and w,, in egs (7) and
(8) shows that if gravitational instability dominates, a plot of
In (W¢orr) versus In (Z') should yield a linear relationship with
slope equal to the power-law exponent, n, that depends on the
style of growth: n=1 for exponential and n>1 for super-
exponential growth (Molnar ez al. 1998). If mechanical thicken-
ing dominates, subtracting the initial velocity from eq. (12)
yields Weorr = éxxZ if h(t) =h(t=0)+ Z(t). This relation should,
like exponential growth, yield a slope of unity in a plot of
In (Weorr) versus In (Z’). Such a plot (Fig. 8) shows an initial
slope near unity for all of the isotherms, indicating exponential
growth of perturbations or mechanical thickening. For the
hotter isotherms, a change in slope indicates a transition to
super-exponential growth of perturbations (slope of m=n=3).
For all of the calculations shown in Fig. 8, the dimension-
less quantity Z'Ra,/P>0.5 for Z'> 6 per cent (In(Z’) > —2.8).
This implies that exponential growth (rather than horizontal
shortening) dominates prior to the transition to super-exponential
growth, at least for the hotter isotherms.

The thermal state after initial instability

The amount of material removed by the initial instability
can be estimated by observing the number of isotherms that
participate in the initial downwelling in Fig. 7. For example,
the bottom three isotherms are clearly involved in the down-
welling for the slowest shortening rate (Fig. 7a). A fourth
isotherm appears to join the instability for faster shortening
(Fig. 7d). Another way of determining how much material is
initially removed is to estimate how many isotherms change
their slopes from m =1 to m=3 in Fig. 8, and thus demonstrate
super-exponential growth of perturbations. In each of the four
cases shown, the hotter four isotherms display changes in slope.
The initial removal event is also evident in a plot of the depth of
each isotherm as a function of time (Fig. 9), and it is clear that
between three and four isotherms are removed by it.

A more quantitative estimate of the amount of material
removed by the initial instability can be obtained by examining
the distribution of isotherms at the removal time in Fig. 9. In
particular, the ratio of each isotherm’s depth at a given time to
its initial depth defines a ‘thickening factor’ that can then be
used to compare the relative deflections of different isotherms
at various times. At the removal time, defined here to be the
time in which the 7"=0.9 isotherm first encounters the bottom
boundary of the finite element grid, isotherms are typically
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Figure 8. A plot of In (wio,,) as a function of In (Z’) for each of the
nine isotherms (solid lines, 7'=0.1-0.9, colder isotherms have smaller
initial velocities) and for the four calculations shown in Fig. 7 (a—d).
Only times before the 7"=0.9 isotherm encounters the bottom of the
box are shown. Theory predicts (see text) a slope of m=1 if either
exponential growth or horizontal shortening controls growth and
m=3 if perturbations grow super-exponentially. Dashed lines with
slopes of 1 and 3 are shown for comparison.

separated into two groups. Colder isotherms subside steadily
with time (Fig. 9) and typically deepen by a factor of less than
about 3 by the time of the removal event. Hotter isotherms that
actively participate in this event penetrate deeply into the box,
which causes them to grow deeper by factors of greater than
about 7, a quantity limited by the box depth (Fig. 9). The
isotherm that delineates the boundary between these two types
of behaviour can be defined as the temperature of material
for which an arbitrarily chosen thickening factor of 5 applies
(Fig. 10). The factor of 5 is midway between the values of 7 and
3 estimated for isotherm ‘removal’ and ‘non-removal,’ but tests
show that choosing 4 or 6 gives similar results.

Thus, the approximate temperature of the coldest material
that participates in the initial removal event is shown in Fig. 10.
Because at least some warming must occur as the cold down-
welling fluid descends, the temperatures shown in Fig. 10 can
be considered an upper bound on the original temperature of
this material. For example, the 7"~ 0.7 isotherm is removed for
r=100 and slow shortening rates (Fig. 10), an estimate that is
supported by comparing the deflection of the 7"~ 0.7 isotherm
to that of the other isotherms in Fig. 9(a). Thus, in this case, at
least the warmest 30 per cent of the original layer participates in
the initial removal event. The cut-off temperature for removal
(Fig. 10) is highly dependent on the temperature dependence
of the viscosity coefficient, r, with nearly the entire layer being
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Figure 9. A plot showing the depth of each of the nine isotherms
(T'=0.1-0.9, colder isotherms are closer to the surface) as a function
of time [made dimensionless using the timescale for exponential
growth in eq. (5)] for the four calculations shown in Fig. 7 (a-d). In
each case, the super-exponential growth phase is evident as the
bottom isotherms plunge deeply into the lower half-space, eventually
descending through the base of the grid at z'=8.27. These isotherms
then begin a period of oscillatory behaviour while the shallower
isotherms continue to be drawn downwards. Also shown for each case
is the dimensionless time at which the layer would have thickened
by 100 per cent in the absence of convective instability. This time
corresponds to 50 per cent shortening at the surface and is given by
€q. (30) as t’lo():Ral/P.

initially removed in the constant B case (r=1), and only the
bottom few isotherms being removed if r=1000. As found
above for r =100, the amount of material removed in this initial
removal event does not depend strongly on the rate of shorten-
ing. This is due to the domination of the initial removal event
by super-exponential growth, which, unlike exponential growth,
does not depend on the shortening rate. Thus, the shortening
rate should not affect the amount of material removed in this
initial instability, provided this rate is large enough to generate
instability.

The thermal state after prolonged thickening

Because these calculations extend beyond the initial instability,
they can be used to examine deformation of the unstable layer
after the initial removal event. As the initial downwelling passes
through the base of the finite element grid, the negative thermal
buoyancy associated with the downwelling isotherms is suddenly
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Figure 10. A plot showing the approximate temperature of the
coldest material removed by the initial super-exponential removal
event (see text) as a function of shortening rate (expressed by P) and
the temperature dependence of viscosity (expressed by r). It is evident
that a greater portion of the layer is initially removed if viscosity is
only weakly temperature-dependent (smaller r) and that the shorten-
ing rate has little effect on the amount of material removed in this
initial event.
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removed, which causes these isotherms to retreat rapidly. This
response is typically followed by another advance of down-
welling, and oscillatory behaviour develops (Fig. 9) until it is
damped into a steady-state downwelling flow (Fig. 7). Such
oscillatory behaviour is an artefact of the no-stress boundary
conditions at the base of the box, which led to a premature
detachment of cold downwelling fluid from the surface layer.
Because these oscillations are minimal for the material that
remains in the surface layer (Fig. 9) and because they are
eventually damped, the no-stress boundary conditions should
only affect the details of the large-amplitude removal of the
initial downwelling, which we do not study here.

Several colder isotherms that do not participate in the
initial removal event are eventually drawn into the continued
downwelling flow that follows (Fig. 7). This behaviour is the
expected result of mechanical thickening of the cold part of the
layer. The velocity boundary conditions force cold fluid into
the right side of the finite element grid and out through its
bottom. If the cold surface layer is in thermal steady state, this
cold fluid must be removed from the layer by the persistent
downwelling. In this light, it is not surprising that increased
shortening rates are associated with a more substantial down-
welling that penetrates deeper into the underlying fluid. Although
these persistent downwellings are generated by shortening, they
are facilitated by the inherent gravitational instability of this
material, which prevents the surface layer from thickening
into an overly unstable condition from which another transient
instability can develop. Thus, the persistent downwellings
that follow prolonged shortening are part of the steady-state
behaviour of a shortening layer.

In the Earth, however, shortening cannot be expected to
continue indefinitely. If shortening ceased, some, at least, of the

material protruding into the asthenosphere would presumably
become unstable, detach, and then be replaced by hotter
material. The amount of material that might be removed can be
estimated by measuring the temperature of the coldest material
that protrudes deeper than the original depth of the 7"=0.9
isotherm, taken to represent the base of the unstable layer.
These temperatures are shown in Fig. 11 for a downwelling
in thermal steady state. It is clear that colder material is
removed from more rapidly shortening layers (large P), but
that the temperature of material removed is independent of the
temperature dependence of viscosity.

The thermal state after 50 per cent shortening

Geological observations in severely shortened regions such as
Tibet indicate that the total amount of horizontal shortening
can reach 50 per cent (shortening by a factor of two) (Le Pichon
et al. 1992; Molnar et al. 1993). Horizontal shortening of
this magnitude can be accommodated by a doubling of crustal
thickness (100 per cent thickening) in the shortening region,
which generates significant buoyancy that resists further crustal
thickening. This resistance causes the region of active shorten-
ing to migrate to undeformed adjacent regions once horizontal
shortening has reached about 50 per cent (e.g. England &
Houseman 1986; England & Searle 1986; Molnar & Tapponnier
1978). If the amount of horizontal shortening is limited to
50 per cent, the amount of time that dense mantle lithosphere is
exposed to the destabilizing effects of horizontal shortening is
also limited. In this case, the persistent downwellings discussed
above might not penetrate as deeply as they would have if
allowed to grow indefinitely.
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Figure 11. Similar to Fig. 10, but showing thermal properties of the
steady-state persistent downwelling that removes material added
to the layer by shortening. Here the temperature of downwelling
material at a depth equal to that of the original position of the 77=0.9
isotherm is shown. If shortening were to stop at this point, material
hotter than that shown here would presumably be removed. It is
clear that the persistent downwelling advects cold material deeper into
the mantle if the shortening rate is higher (larger P), and that the
temperature dependence of viscosity is of lesser importance.
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Because the dimensionless time to the initial removal event is
a constant value of about 8, 50 per cent shortening occurs well
after the initial removal event for a slowly shortening layer
(Fig. 9a), but the two may be nearly simultaneous if shorten-
ing is rapid (Fig. 9d). Thus, for the shortening rates studied,
50 per cent shortening typically occurs sometime after the
initial removal event, but before the persistent downwelling has
grown to its full extent. To characterize the thermal state of the
persistent downwelling at the time of 50 per cent shortening,
the temperature of the coldest material at the original depth
of the 7=0.9 isotherm is again recorded, this time at the
dimensionless time #}go. The result (Fig. 12) shows that this
temperature is generally hotter at the time of 50 per cent
shortening than it is after prolonged shortening (compare to
Fig. 11), particularly at large strain rates. In fact, the increased
temperatures at large P cause the dimensionless temperature to
have a nearly uniform value between 0.3 and 0.4 (Fig. 12).
Thus, if convergence slows after shortening an unstable layer
by 50 per cent, the hottest 60-70 per cent of downwelling fluid
should be removed, a value independent of the shortening rate
and the temperature dependence of viscosity.

APPLICATION TO THE LITHOSPHERE

The above analysis shows that several styles of deformation are
possible for a dense layer undergoing horizontal shortening,
and that the particular style that a layer chooses depends on
the values of the dimensionless quantities Ra;, Ras, P and Z'".
This analysis can now be applied to the mantle lithosphere to
determine the types of deformation that are possible as a result
of shortening, and to characterize the changes to the litho-
spheric structure that may result from this deformation. To
do this, parameter values relevant to the lithosphere must be
estimated. These include p,=3300kgm™, g=9.8 ms~ 2
a=3x10">K~! and k=10"°m? s~ ! If the mantle litho-
sphere varies in temperature between 7,=800 K at the Moho
and T,,,=1600 K at its base, the temperature variation across the
potentially unstable mantle lithosphere is 7y= T, — 75, =800 K.
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Figure 12. Similar to Fig. 11, but showing measurements taken at
t100, the time for 100 per cent thickening (or 50 per cent horizontal
shortening) to occur. In this case, the temperatures shown depend
only weakly on both the shortening rate given by P and the viscosity
variation given by r.
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The rheology of mantle lithosphere is thought to be charac-
terized by diffusion creep, for which n=1, at stresses lower that
0.1-1 MPa, and by dislocation creep, for which n=3 to 3.5, at
higher stresses (Karato et al. 1986). Convective instability
should be accompanied by stresses greater than this, favouring
dislocation creep. Hirth & Kohlstedt (1996) proposed that the
mantle is ‘wet’ below 60-70 km depth, for which Karato et al.
(1986) deduced a power-law exponent of n=3, an activation
energy of Q=420 kJ mol~! and a pre-exponential factor of
A=1.9x10"" Pa s~ for olivine. Using these parameter values,
Conrad & Molnar (1999) estimated B, =1.9 x 10° Pa s'*. Hirth
& Kohlstedt (1996), however, assigned n=3.5 to wet olivine. The
considerable uncertainty associated with Conrad & Molnar’s
(1999) estimate of B, is accommodated here by using n=3 and
allowing B, to vary.

The ‘available buoyancy’ parameter F, accounts for the
temperature dependence of B for a given temperature profile
in a layer. Conrad & Molnar (1999) estimated its value for
wet dislocation creep by assuming an activation energy of
0=420 kJ mol~!. They found F;=1.3x10"* for an error
function temperature profile. If the strain rates associated with
horizontal shortening control the effective viscosity of the
layer, this viscosity is constant with perturbation amplitude,
meaning that the power-law exponent n=1 is applicable.
Following Conrad & Molnar (1999), F;=5.7x 1072 for the
error function temperature profile, which is slightly larger than
that estimated by Conrad & Molnar (1999) for n=1, because
their study uses parameters for diffusion creep without hori-
zontal shortening. If the temperature profile is not that of an
error function, estimates of the ‘available buoyancy’ should be
different from those assumed here. This uncertainty is accept-
able, however, because it can be absorbed by the uncertainty
associated with the strength parameter By,.

As described above, the values of Ra;, Raz and P can be used
to determine which of the above-described mechanisms should
dominate lithospheric deformation. In particular, their ‘critical’
values (Table 1) delineate transitions between different styles
of thickening and growth. By plotting the locations of these
transitions as a function of parameters that can vary, a ‘phase
diagram’ can be constructed that shows the dominant style of
growth in different regions of the space defined by the variable
parameters. An example diagram (Fig. 13) shows the typical
locations of boundaries between the four deformation styles, or
‘phases,” in the space defined by the strength parameter By,
and the time f;q9, for 100 per cent thickening to occur, which
defines the strain rate according to eq. (29). In this case, if both
Ray; <100 and Ra; <100, the layer is convectively stable, with
mechanical thickening (MT) dominating if P>1 and thicken-
ing by thermal diffusion (TD) dominating otherwise. If
Ra;>100, horizontal shortening still dominates if ZyRa,/
P <0.5, otherwise perturbations grow exponentially (EG) with
time for Ra;/Ras> 1 and super-exponentially (SEG) otherwise.
The locations of these boundaries relative to dimensional values
of By, and t;o9 depend on the parameters used to calculate Ra,
Raz and P. As a result, diagrams are constructed by plotting
the locations of these ‘critical’ values as functions of B, and
t10o for the lithospheric parameters given above, perturbation
amplitudes of Z3=10 per cent (Fig. 14) and Z5=50 per cent
(Fig. 15), and layer thicknesses of #=25, 50, 100 and 200 km
(a—d in Figs 14 and 15).

The boundaries between dominating styles of thickening or
unstable growth change as the mantle lithosphere thickens,
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Figure 13. A cartoon of a ‘phase diagram’ that shows the dominant
style of thickening or growth (the ‘phases’) as a function of the
strength parameter B, and the time, #,00, for 100 per cent thickening
(or 50 per cent horizontal shortening) to occur. Here, 7oy defines the
background horizontal strain rate, as in eq. (29). The boundaries
between each of the four regions are determined by the ‘critical’ values
associated with Ra;, Ra; and P summarized in Table 1: Ra; =100,
Ra3;=100, P=1, Ra;/Raz=2 and ZyRa;/P=0.5. For each line, arrows
show the direction in which a quantity increases or decreases away from
the line. Light lines show portions of these lines that are not relevant to
determining the stability of a given mode. The four mechanisms include
thickening by thermal diffusion (denoted TD), mechanical thicken-
ing associated with horizontal shortening (denoted MT), exponential
growth of perturbations (denoted EG) and super-exponential growth of
perturbations (denoted SEG).

or as perturbations to it grow. By considering how these
boundaries move due to changes in 4 or Z, the evolution of
the mantle lithosphere’s thermal structure can be examined.
Consider mantle lithosphere for which Zy=10 per cent,
B,,=10'""Pa s'3, h=25 km and #;0o=>50 Myr. Initially, such
a lithosphere grows most rapidly by cooling from above
(Fig. 14a). However, as it thickens, Ra; increases, causing the
transitional boundary of P=1 to move towards larger values of
t100- By the time the lithosphere is 50 km thick (Fig. 14b), such
mantle lithosphere grows most rapidly by horizontal shorten-
ing. Alternatively, if the shortening rate increases due to an
acceleration of convergence at the surface, #;o9 should decrease,
causing a transition from thermal diffusion to horizontal
shortening as the most rapid mechanism (Fig. 14a).

The thickness of the mantle lithosphere should continue to
increase, either by cooling from above or by horizontal shorten-
ing, until the lithospheric layer becomes convectively unstable.
In fact, it can be argued that continental lithosphere is probably
close to its stability limit for long portions of the Earth’s
history. The lithospheric roots beneath the cratonic shields,
for example, are thought to have experienced little deformation
since the Archaean (e.g. Hoffman 1990). Without any defor-
mation, cooling from the surface since that time should cause

the lithosphere to grow several times thicker than its maxi-
mum depth, which has been estimated at up to 200-300 km
(e.g. Gaherty & Jordan 1995; Jaupart et al. 1998; Jordan
1988; Simons et al. 1999). Clearly, some erosion of the litho-
spheric base must occur to limit the lithospheric depth, even if
the lithospheric root is partially stabilized due to an inherent
chemical buoyancy, as has been proposed for the continental
‘tectosphere’ (e.g. Jordan 1978, 1981, 1988). If the erosion
process involves convective instability, then the continental
lithosphere should be at or near its stability limit, which is given
by Ra; =100 or Raz=100.

Consider mantle lithosphere that is tectonically stable (not
shortening) and that has grown to its stability limit, for which
Raz=100. The thickness of such lithosphere is given by the
value of / that produces Ra; =100 for values of Zj and By,
appropriate for the lower lithosphere (Figs 14 and 15). For
example, if Z5=10 per cent and the experimentally observed
value of By ~10%! Pas® applies, only mantle lithosphere
thinner than ~25 km is stable to convection (Fig. 14a). If
mantle lithosphere thicker than this value can remain stable,
B, must be greater or Z, must be smaller. In fact, an order of
magnitude increase in By, is required to increase the maximum
thickness of stable lithosphere to 100 km (Fig. 14c). An increase
in By, with lithosphere thickness is perhaps expected due to the
pressure dependence of dislocation creep (e.g. Karato & Wu
1993). In addition, it is possible that uncertainties in estimates
of F; or in the application of laboratory measurements of By, to
the lithosphere could conspire to permit layers that are more
than 100 km thick to be stable to small-scale convection at their
bases.

If horizontal convergence is applied to a layer that is close
to its stability limit (Raz =100), gravitational instability can be
initiated rapidly. An increase in the background horizontal
strain rate, £.,, corresponds to a decrease in the time to 100 per
cent thickening, given by #1og in eq. (29). As shown in Figs 14
and 15, a sufficiently large decrease in ¢;oo along the Raz =100
curve causes exponential growth of perturbations to dominate
deformation of the layer. For example, if By, ~10'%! Pa s and
Z5=10 per cent, mantle lithosphere of thickness 7 =100 km
is stable to convection if shortening is sufficiently slow that
t100>80 Ma (Fig. 14c). For #1900~ 30 Myr, as seems to charac-
terize Tibet (Molnar et al. 1993), the lithosphere is gravitationally
unstable, with perturbations growing exponentially with time
(Fig. 14c). Once perturbations begin to grow, the region for
which Ra;>100 (super-exponential growth of perturbations)
begins to include larger values of By, (compare Figs 14 and 15).
Thus, 100 km thick lithosphere for which B, =10'"! Pa s!/?
and #19o=30 Myr, but for which perturbations have increased
to 50 per cent, should exhibit super-exponential growth of
perturbations (Fig. 15c). In fact, if the layer is already at its
stability limit before it begins thickening, super-exponential
growth should begin after only a small increase in perturbation
amplitude, meaning that the majority of the deformation should
occur as super-exponential growth.

If the onset of horizontal convergence is not sufficient to
initiate exponential growth, super-exponential growth may
still develop after sufficient mechanical thickening. First, non-
uniform horizontal shortening may increase the amplitude
of perturbations, causing the layer to move from a state
in which horizontal shortening dominates to one in which
super-exponential growth dominates. If By, =10'"! Pa s'* and
h=100 km, but #oy decreases only to 100 Myr, an increase in
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Figure 14. ‘Phase diagrams’ similar to the one exemplified in Fig. 13, but where the parameters relevant to the lithosphere (see text) are used to
calculate the locations of boundaries between the different styles of thickening and growth. Shown in (a)—(d) are diagrams for mantle lithosphere
with thicknesses of #=25, 50, 100 and 200 km, and for an initial perturbation amplitude of Z=10 per cent.

perturbation amplitudes due to horizontal shortening should the mantle lithosphere can be estimated by making eq. (11)
still cause super-exponential growth to become dominant dimensional using eq. (9), which for n=3 can be written as
(compare Figs 14c and 15c). Alternatively, an increase in layer e |
thickness # due to mechanical thickening should cause a th=——— —=. (31)
. . KRa; 2C3
marginally stable layer to become unstable (compare the location
of Bn=10""! Pa s and #,0o=100 Myr in Figs 14c and d). Because super-exponential growth begins when Raz =100, with
Once super-exponential growth begins, the time for the C=0.45 the removal time can be written as 1, =0.0554%/x. With
initial gravitational instability to remove the bottom part of k=10"°m?s!, 1, becomes a function of only the layer
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Figure 15. Similar to Fig. 14, but for a perturbation amplitude of Zy=50 per cent. A comparison to Fig. 14 shows that the region in which
super-exponential growth of perturbations dominates (denoted SEG) is larger for larger Zj.
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Figure 16. Plot of the time, 7y, for the initial instability to remove the
base of the mantle lithosphere, and of the time, #;¢o, for 100 per cent
thickening of the lithosphere (or 50 per cent shortening) to occur.
Both 1, and 719 are calculated as described in the text as a function of
the thickness, /, of the mantle lithosphere. The 100 per cent thickening
time depends on the shortening rate, expressed here in terms of P.

thickness, / (Fig. 16). All of the other parameters that affect
growth are eliminated from this expression by the assumption
that super-exponential growth begins when Ra;=100. If, as
discussed above, a phase of exponential growth or shortening
precedes super-exponential growth, its duration should be
short and thus should not significantly affect this estimate of .

As discussed above, the amount of material removed by
the initial instability depends primarily on the temperature
dependence of viscosity. If, as is likely to be the case, viscosity
varies by a factor of more than 100 across the mantle litho-
sphere, at most only the hottest 30 per cent of the mantle
portion of the lithosphere can participate in downwelling and
ultimately be removed (Fig. 10). If shortening continues after
this time, however, the ongoing addition of cold material to
the lithosphere is balanced by a persistent downwelling that
removes this extra cold mantle lithosphere from the shortening
region. If shortening is sufficiently fast and is allowed to occur
indefinitely, this downwelling is capable of producing lateral
temperature variations below the shortening region with ampli-
tudes of up to 90 per cent of the total temperature variation
across the cold layer (Figs 8 and 12).

The total amount of lithospheric shortening that occurs in
the Earth may be limited to 50 per cent. As a result, the amount
of time during which a persistent downwelling can develop
may be limited as well. The time to 50 per cent shortening
(100 per cent thickening) can be compared to the time for the
initial instability to occur by taking the ratio of #,oo and #, using
eqs (29) and (31). Simplifying using Ra3=100 and C=0.45
shows that #,9o=1,/(0.055P). Thus, the time to 50 per cent
shortening is some multiple of the initial removal time, where
this multiple depends on P (Fig. 16). If shortening is sufficiently
fast that P>1/0.055~ 18, mechanical thickening of the layer
should occur more rapidly than convective instability, meaning
that an estimate of ¢, is probably not relevant. As shown in
Fig. 16, P>18 requires 100 km thick mantle lithosphere to
double in thickness in only 15 Myr, and thinner lithosphere
to shorten even more rapidly. This is faster than the ~30 Myr
expected for shortening by 50 per cent in Tibet (Molnar et al.
1993), but implies horizontal strain rates of ~ 107> s~!, which

are perhaps not unreasonable for other convergent zones such
as the Transverse Ranges of California (e.g. Houseman et al.
2000).

On the other hand, if shortening is slow enough that P <18,
then #,90 > t,, meaning that 50 per cent shortening occurs after
the initial removal event. In this case, only the hottest 60 per
cent of material is advected into the mantle (Fig. 12). Because
the persistent downwelling removes material that is advected
into the downwelling region, its amplitude depends on the
amount of shortening that occurs. Thus, for shortening of
50 per cent, the amount of material that participates in the
downwelling is a constant. This amount (the hottest ~60 per
cent, corresponding to ~ 500 °C of temperature variation if the
mantle lithosphere accounts for ~800 °C) is a larger fraction
of the lithosphere than is observed to participate in the initial
instability (at most the hottest ~30 per cent or ~250 °C),
making the persistent downwelling a potentially more important
consequence of shortening than the initial removal event.

A possible limitation of this analysis is that it is per-
formed in only two dimensions, meaning that downwellings
are necessarily sheet-like structures. This limitation is perhaps
acceptable because this study is designed to treat instability that
is generated by horizontal shortening, which, for convergence
between two large plates, is inherently a 2-D process. Because,
however, instabilities grow exponentially or super-exponentially
with time, small lateral differences in growth rate can be rapidly
amplified, causing a downwelling sheet to have a 3-D structure,
which could complicate the application of these results to the
mantle. In addition, these results treat dislocation creep, for
which n ~ 3. Thus, regions of low strain rate resist flow because
their effective viscosity is high. It is possible that flow in the
asthenosphere is instead Newtonian, with a viscosity as low as
10 Pa s (e.g. Hager 1991). In this case, the viscosity beneath
the lithosphere would not be dictated by the background
shortening rate, and thus would allow the lower lithosphere to
be removed more rapidly, even at lower shortening rates than
the above analysis suggests. On the other hand, deflection
of the Moho is also ignored, which, if driven by convective
instability, should tend to resist convective instability because
it is gravitationally unfavourable (e.g. Houseman et al. 2000;
Neil & Houseman 1999). Moho deflection may, however, also
promote convective instability by generating large-amplitude
perturbations to the mantle lithosphere’s thermal structure.

CONCLUSIONS

The theory and numerical experiments described above
examine the deformation of unstable mantle lithosphere that is
undergoing active shortening. The thermal structure of mantle
lithosphere evolves due to four processes. In the absence of
convective instability, mantle lithosphere thickens either by
horizontal shortening or by cooling from above. Convective
instability manifests itself either by the exponential growth of
perturbations, which requires lithospheric viscosity to be set by
the background shortening rate, or by the super-exponential
growth of these perturbations, in which case viscosity is set
by the strain rates associated with instability. The conditions
under which each type of deformation is dominant can be
determined by comparing the amplitudes of the dimensionless
parameters Ra,, Ras, P and Zj, which are defined for this
purpose (Table 1).
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In applying these results, mantle lithosphere is assumed
to have cooled sufficiently that Ra;~ 100, meaning that it is
nearly convectively unstable. In this case, horizontal shorten-
ing can easily initiate convective instability by increasing the
amplitude of perturbations, either directly through non-
uniform thickening, or by lowering the background viscosity
so that perturbations begin to grow exponentially with time.
Once super-exponential growth begins, the time for removal
is approximately ,=0.0554%k. Thus, for mantle lithosphere
100 km thick, the initial removal event occurs 17 Myr after
shortening initiates super-exponential growth. For strongly
temperature-dependent viscosity, at most only the hottest
30 per cent of the mantle lithosphere is involved in this event.

As shortening of the lithosphere continues, downwelling of
lithospheric material persists after the initial removal event.
This downwelling removes material that is continually being
added to the layer by shortening, and thus is more substantial
for larger shortening rates. Geological evidence suggests,
however, that the total amount of shortening may be limited
to 50 per cent, corresponding to thickening of 100 per cent
(doubling of crustal thickness). Thus, shortening may cease
before this downwelling can fully develop. Because this per-
sistent downwelling removes material added to the litho-
sphere by shortening, its amplitude depends on the amount of
shortening that occurs. For 50 per cent shortening, the hottest
60 per cent of the mantle lithosphere participates in the
downwelling (Fig. 12). Thus, the downwelling that results from
ongoing mechanical thickening of the layer is more substantial
than the preceding downwelling associated with the initial
removal event.

If mechanical thickening stops after achieving 50 per cent
shortening, the downwelling that extends into the mantle
beneath the shortening region is no longer replenished by the
addition of lithosphere above it. As a result, this downwelling
‘finger’ is not likely to survive once horizontal shortening stops,
but should instead be removed due to its own gravitational
instability or by mantle shear. The replacement of this cold,
downwelling fluid by hot, buoyant asthenosphere should cause
significant uplift at the surface, a scenario related to the
generation of uplift following the cessation of subduction and
the subsequent removal of the descending slab (e.g. Mitrovica
& Jarvis 1985). If uplift is generated in this way, it should
immediately follow the cessation of shortening in a region. For
Tibet, 50 per cent shortening (doubling of crustal thickness)
began at 40-50 Ma and is thought to have taken 30-40 Myr to
complete. Rapid uplift at the surface is inferred to have begun
at approximately 8 Ma (Harrison ez al. 1992; Molnar et al.
1993), after shortening had ceased within the interior of Tibet.
This pattern is consistent with the gradual building of a cold
protrusion into the mantle by horizontal shortening and rapid
surface uplift associated with its removal once shortening
stopped.
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