Chapter 6

Mantle Convection with Strong

Subduction Zones

Abstract. Because mantle viscosity is temperature-dependent, cold subducting
lithosphere should be strong, which implies that the rapid, localized deformation
associated with subduction should resist plate motions, and thus slow convection in
the underlying mantle. Due to computational constraints, the deformation of a sub-
ducting plate cannot be accurately resolved in mantle-scale convection models, so its
affect on convection is difficult to investigate. We have developed a new method for
implementing subduction that parameterizes the deformation associated with bending
of the oceanic lithosphere within a small region of a finite element grid. By imposing
velocity boundary conditions in the vicinity of the subduction zone, we enforce a ge-
ometry for subduction, producing a slab with a realistic thermal structure. To make
the model dynamically consistent, we specify a rate for subduction that balances the
energy budget for convection, which includes an expression for the energy needed to
bend the oceanic lithosphere as it subducts. This expression is determined from a
local model of bending for a strong viscous slab. By implementing subduction in
this way, we have demonstrated convection with plates and slabs that resemble those
observed on Farth, but in which up to 30% of the mantle’s total convective resistance
is associated with deformation occurring within the subduction zone. This additional

resistance slows plate velocities by nearly a factor of two compared to models with
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a weak slab. For sufficiently strong lithosphere, the bending deformation is sufficient
to stop plate motions altogether and causes convection beneath a “stagnant lid.” By
introducing a low-viscosity asthenosphere beneath the oceanic plate, we demonstrate
that small-scale convection at the base of oceanic lithosphere may limit plate thick-
ness, and thus the resistance to bending, and causes plate velocities to depend on
the strength of the bending lithosphere rather than on the viscosity of the underlying
mantle. For a cooling Earth, lithospheric strength should be nearly constant, but
the mantle viscosity should increase with time. Thus, subduction-resisted convection
should produce nearly constant plate velocities and heat flow over time, which has
implications for the thermal evolution of the Farth. We estimate that this style of con-
vection should apply for the Earth if the effective viscosity of the bending lithosphere
is greater than about 10%* Pa s, but only if some mechanism, such as small-scale
convection, prevents the bending resistance from stopping plates altogether. Such a

mechanism could be fundamental to plate tectonics and Earth’s thermal history.

6.1 Introduction

The motions of Earth’s tectonic plates are understood to be the surface expression
of convection in the mantle. Because the plates are cold, they are denser than the
mantle beneath them, and thus gravitationally unstable. For Earth, this instability
manifests itself as subduction, in which oceanic lithosphere bends and dives into the
mantle beneath overriding plates. Because it involves the entire oceanic lithosphere,
subduction is an efficient mechanism for converting the significant negative buoyancy
of the surface plates into horizontal density gradients that drive convection. In fact,
subducted lithosphere is thought to drive plate motions, and thus mantle-scale flow,
by pulling on attached surface plates [e.g., Chapple and Tullis, 1977; Forsyth and
Uyeda, 1975; Hager and O’Connell, 1981; Lithgow-Bertelloni and Richards, 1995].
The cold temperatures of surface plates also make them stiffer than the underlying
mantle, a fact that causes plates to move rigidly as coherent units. The temperature-

dependent viscosity that strengthens plate interiors, however, should also strengthen
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subducting lithosphere, and thus tend to resist the rapid localized deformation asso-
ciated with subduction. Indeed, numerical studies of mantle convection show that if
temperature-induced viscosity contrasts are above about 10° — 10°, a cold thermal
boundary layer can become strong enough to resist deformation altogether, forc-
ing convection to occur instead beneath a “stagnant 1id” [e.g., Christensen, 1984a;
Davaille and Jaupart, 1993; Moresi and Solomatov, 1995; Rateliff et al., 1997; Solo-
matov, 1995]. Laboratory measurements of the temperature-dependence of diffusion
or dislocation creep in mantle rocks [e.g., Hirth and Kohlstedt, 1996; Karato et al.,
1986] suggest an order of magnitude variation in viscosity for every 100°C degrees of
temperature change. For a temperature difference of ~ 600 C across the ductile part
of the lithosphere, viscosity variations should be more than sufficient for a stagnant lid
to develop, yet this style of convection is not dominant for Earth. Subduction zones,
then, serve to break an otherwise stagnant lid by permitting the rapid localized de-
formation that is required for plate-like motions to occur. The weakening mechanism
that allows subduction is not well understood, but brittle fracture [e.g., Moresi and
Solomatov, 1998; Zhong and Gurnis, 1996; Zhong et al., 1998], strain-rate-weakening
le.g., Tackley, 1998], a maximum yield stress [e.g., Trompert and Hansen, 1998], and
various self-lubricating rheologies [e.g., Bercovici, 1996; 1998; Lenardic and Kaula,
1994] have been proposed as possibilities.

Generating plate-like behavior in numerical models of mantle convection generally
involves weakening convergent plate boundaries in some way, and justifying this action
by appealing to one or more of the above mechanisms for weakening. For example, one
commonly-used method is to simply parameterize all of the possible weakening effects
into low-viscosity “weak zones” that are imposed between high-viscosity plates [e.g.,
Davies, 1989; Gurnis and Hager, 1988; King and Hager, 1990; 1994; Puster et al.,
1995]. Weak zones also can be generated naturally by applying stress-weakening or
self-lubricating constitutive laws to the lithosphere. This generates “instantaneous”
zones of weakness between rigid plates and avoids the necessity of imposing plate
boundary locations [e.g., Bercovici, 1996; 1998; Lenardic and Kaula, 1994; Tackley,
1998; Trompert and Hansen, 1998]. Other studies break the surface lithosphere with
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a fault that allows a jump in velocity across its width and may support some degree
of shear stress [e.g., Toth and Gurnis, 1998; Zhong and Gurnis, 1994, 1995a, b; Zhong
et al., 1998]. Finally, plate-like behavior can be forced by simply imposing piecewise
continuous plate velocities at the surface [e.g., Hager and O’Connell, 1979; Davies,
1988; Bunge and Richards, 1996]. Such kinematic models avoid the difficulties of
implementing realistic subductions zones, but are not dynamically self-consistent.

Due to computational constraints, the deformation associated with convergent
plate boundaries typically spans only a few elements of a regularly spaced finite
element grid. Thus, for the above methods to be accurate, they must include the
deformation of a subducting plate within the small region of weakening in which
subduction is implemented. It is not clear, however, that any of these studies achieve
an accurate representation of subduction because the convergence that occurs in
these studies is not compared to detailed observations available at subduction zones.
For example, the seismicity of the upper 200 km of Wadati-Benioff zones is thought
to indicate plate bending as a slab begins to subduct, followed by unbending as
the straightens and continues into the mantle [e.g., Bevis, 1986; 1988; Engdahl and
Scholz, 1977; Hasegawa et al., 1994; Isacks and Barazangi, 1977; Kawakatsu, 1986].
This unique strain pattern has been reproduced in detailed local models of subduction
le.g., Conrad and Hager, 1999a; Houseman and Gubbins, 1997; Melosh and Raefsky,
1980; Toth and Gurnis, 1998; Zhang et al., 1985] in which a strong plate is forced to
bend as it passes through a realistic subduction zone geometry. Global-scale models
must parameterize subduction more coarsely and thus cannot accurately mimic the
stresses associated with bending or unbending within the subducting plate.

Part of the deformation that occurs during subduction is expressed as brittle
fracture by seismicity. Brittle fracture is an inelastic deformation mechanism, which
means that energy is dissipated as the subducting plate bends and unbends in the
subduction zone [e.g., Chapple and Forsyth, 1979]. In addition, the mantle certainly
behaves as a highly temperature-dependent fluid, so additional inelastic deformation
should occur as viscous flow. Thus, subduction zones may demand a significant

fraction of the mantle’s total energy budget. In fact, Conrad and Hager [1999a] show
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that if slabs remain two orders of magnitude stronger than the upper mantle as they
descend, the bending and unbending of oceanic lithosphere at subduction zones may
require as much energy as viscous flow within the mantle interior. If the energy
spent on plate bending were available instead for deforming the mantle, as it would
be if subduction zones were weak, significantly faster plate velocities would result.
Thus, it is possible that plate bending at subduction zones, by retarding the flow
of the oceanic lithosphere into the mantle interior, could limit plate velocities. This
result is confirmed by Becker et al. [1999], who compare laboratory and numerical
experiments for a growing slab.

Because most large-scale convection models requires convergent plate boundaries
to be weak for subduction to occur, the energy dissipated at these boundaries should
not be particularly large. On the other hand, Conrad and Hager’s [1999a] local
model of subduction produces plate-like behavior while dissipating significant energy
within a subducting slab that remains strong as it deforms. Conrad and Hager’s
[1999a] subduction model, however, uses an irregular finite element grid that is both
too complicated and of too high resolution to be of practical use in larger, mantle-
scale studies. In this work, we devise a method for including the results of Conrad
and Hager’s [1999a] analysis within a small region of a large, regularly-spaced, fi-
nite element grid. To do this, we impose a geometry for subduction that produces
realistic temperature and velocity fields for the resulting slab. To make subduction
dynamically self-consistent, we also specify the rate at which subduction occurs by
applying Conrad and Hager’s [1999a] energy balance analysis. This method allows
us to control how much energy is dissipated within the subduction zone, and thus
parameterizes the effects of deformation within the subduction zone on convection in
the entire mantle. Using this method, we study mantle convection with subduction
zones that dissipate a significant fraction of the mantle’s convective energy, as they
should if oceanic plates remain strong as they subduct. In doing so, we determine
the maximum amount of bending dissipation that is possible before “stagnant lid”
convection develops. In addition, we confirm some of the predictions made by Con-

rad and Hager [1999b], who suggest that the bending resistance at subduction zones
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could profoundly influence Earth’s thermal history.

6.2 The Energetics of Mantle and Lithosphere De-
formation

Convection in the mantle is typically formulated as a balance between viscous stresses
and gravitational body forces, but it can also be described by an energy balance be-
tween the rate at which gravitational potential energy is released and the rate at
which this energy is dissipated viscously by the deformation of mantle and litho-
sphere materials [e.g., Backus, 1975; Chandrasekhar, 1961, pp. 12-14; Conrad and
Hager; 1999a, Hewitt et al., 1975]. For this study, we implement subduction-driven
convection using both approaches; we use a force balance to determine viscous flow
within the mantle and an energy balance to describe the effects of subduction zone
deformation on the entire convecting system. More specifically, we use an expression
for the energy required to bend subducting lithosphere to parameterize the gross ef-
fects of this deformation on convection, but without requiring sufficient resolution to
accurately describe plate bending. To implement this energy balance, we must first
determine the energy dissipated by a subducting slab and compare this to the total
energy requirements of convection. Here we follow the analysis of Conrad and Hager
[1999a], who assume a viscous rheology for the bending lithosphere. The approach,
however, is general and dissipation associated with other deformation mechanisms
could be included, if desired.

Mantle convection is driven by lateral variations in the mantle’s heterogeneous
density field. Potential energy is released largely by the downward motion of cold
slabs and the upward motion of hot plumes. The total potential energy release, ®P°,

can be written as:

@pe:ApgaT(x,z)vz(x,z)dA (6.1)

where p is density, g is the acceleration due to gravity, « is the thermal expansivity, T'

is temperature, and v, is the vertical velocity (positive upwards). For two-dimensional
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flow, the total potential energy release is calculated by integrating over the entire area,
A, of the convecting system, and is given per unit length perpendicular to the plane
of flow. For flow driven by the negative buoyancy of slabs, Conrad and Hager [1999a]

show that this expression becomes:

pe _ pga(Tznt - Ts)lshs

¢ N

v, = CP, (6.2)

where T;,; and T, are the temperatures of the mantle interior and surface, h; is the
thickness of the slab as it subducts, [, is the length of the subducted portion of the
slab, and v, is the slab’s downward velocity, which we assume is equal to the velocity
of the attached surface plate. Here we introduce the quantity CP°, which will prove
useful later, to express the dependence of ®P° on everything except for v,.

The release of potential energy is balanced by energy dissipation throughout the
entire convecting system. For viscous flow, the viscous dissipation, ®¥4, can be written

as [e.g., Chandrasekhar, 1961, pp. 12-14]:
@Vd:/ ,',dAzz/ éndA 6.3
M TijCij f Ne€ijcij (6.3)
where the strain-rate, ¢;;, is given by:

=5 (axj * 8:1:2') (6.4)

and is related to the deviatoric stress, 7;;, by the constitutive relation:

Tij = 2776” (65)

which defines the effective viscosity, n, of the fluid. For mantle flow driven by the
motion of a plate and a slab, each moving with speed v, the total viscous dissipation

can be expressed using (6.3) as:

¥ = C, 00’ (6.6)

p
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where 1, is the effective mantle viscosity and C,, is a geometrical constant that
depends on the pattern of flow [Conrad and Hager, 1999a].

Because their viscosity is temperature-dependent, subducting slabs should have a
material strength, expressed here as an effective viscosity n;, that is greater than that
of the underlying mantle. In addition, subduction zones accommodate large changes
in surface velocity over short horizontal distances, which implies large strain-rates.
According to (6.3), both of these facts indicate that the viscous dissipation for a
subduction zone should be large. By combining theory with numerical calculations,
Conrad and Hager [1999a] show that the bending and unbending of an effectively

viscous lithosphere in a subduction zone produces a viscous dissipation, ®}4, of:

h 3
(I);’d = 21);771 (ES) (67)

where R is the radius of curvature that describes the bent shape of the slab. Conrad
and Hager [1999a] show that ®}4 may be larger than ®¥¢ if the effective lithosphere
viscosity is of order 10** Pa s, which is only about two orders of magnitude larger
than estimates for the viscosity of the underlying mantle. Significant energy dissipa-
tion may also be associated with other aspects of the subduction zone. For example,
Conrad and Hager [1999a] estimate that dissipation in the fault zone between the slab
and the overriding plate may account for up to 10% of the mantle’s total energy dis-
sipation. Additional dissipation may result from corner flow in the mantle associated
with the motion of the subducting plate.

The effective lithosphere viscosity, n;, that applies in (6.7) represents the com-
bined effects of all of the deformation mechanisms that contribute to bending of the
lithosphere, which should include viscous flow, brittle fracture, and non-Newtonian or
plastic deformation. In using (6.7) to express the bending dissipation, an assumption
is made that 1 does not vary with either the plate velocity v, or the plate thickness
hs. If, however, the viscosity depends on stress or strain-rate, then 7; should decrease
as either of these quantities increase. For example, if the lithosphere’s brittle rheology

causes it to fail for stresses above some maximum yield stress, then (6.3) suggests that
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®y4 should be linearly dependent on v,. Similarly, bending stresses should increase as
hs increases, meaning that stress-weakening should cause the effective viscosity n; to
be smaller for thicker plates. In this analysis, we study how one model for subduction
zone deformation affects mantle-scale convection, using (6.7) to express bending for a
viscous lithosphere. In doing so, we recognize that non-linear viscosity or subduction
zone deformation not associated with bending may introduce additional behavior, but

save the analysis of these complicating effects for future study.

6.3 Including Plate Bending within a Numerical
Convection Calculation

To simulate the bending of oceanic lithosphere in a subduction zone, we modify
ConMan, a finite element code that solves the coupled thermal diffusion and incom-
pressible Navier-Stokes equations for a highly viscous fluid [King et al., 1990]. These
modifications allow the effects of plate bending to be included within a small region
of a regular finite element grid. To illustrate this, we set up a finite element grid (Fig-
ure 6.1) with aspect ratio 2.5, a resolution of 40 by 100 elements, free-slip boundary
conditions on the top and bottom surfaces, and flow-through boundary conditions
on the two sides. Temperature boundary conditions maintain constant temperatures
Ty at the grid base and Ts < T} at the surface. The surface also includes an explic-
itly strong continental lithosphere (40 elements wide) and oceanic lithosphere that
is distinguished from the underlying mantle by its lower temperature. Temperature-
dependent viscosity makes the oceanic lithosphere strong and thus causes its motions
to be plate-like. The oceanic lithosphere is bounded on one side by a low-viscosity
“ridge,” and on the other side by a specially-designed “subduction zone” that imple-
ments the descent of oceanic lithosphere into the mantle and expresses the energy

requirements of a bending plate, as described below.
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Figure 6.1: Cartoon showing the various regions of the finite element grid, each of
which is characterized by different viscosity laws, as defined in Table 6.1. Mantle
and subduction zone viscosity is temperature-dependent while the other regions have
constant viscosity. Of these, the ridge is weak, the upper continent is strong, and the
lower continent viscosity is approximately equal to that of the mantle interior. A few
models include a low-viscosity asthenosphere that has a constant viscosity 1/10th that
of the mantle interior. The subduction zone region includes a set of specially-designed
velocity boundary conditions (detailed in Figure 6.2) that impose the geometry for
subduction.

6.3.1 Nondimensionalization

At this point, it is useful to define a set of dimensionless variables. We define the

Rayleigh number, Ra,,, for the convecting system as:

_ pgaATD?

KNm

Ray, (6.8)

where AT is the temperature difference T, — T, D and x are the thickness and
thermal diffusivity of the mantle layer, and n,, is its average viscosity, which in these
calculations is calculated by following Parmentier et al. [1976], who suggest weighting
the viscosity by the square of the strain-rate. We define a dimensionless viscosity, 1/,

as:

= (6.9)



where 7 is the mantle viscosity corresponding to Ra,, = 10°, a value we use as a
reference model in the calculations to follow. In these calculations, we vary Ra,, by
changing 7, and keep the other terms in the Rayleigh number, as defined by (6.8),

constant. We define a dimensionless temperature, T’, according to:

T—-1T;

T =
Tb_Ts

(6.10)

Thus, 7" = 0 at the surface and T” = 1 at the base. Finally, we nondimensionalize

time and distance according to:

1= t% and ' = % (6.11)
which implies a nondimensionalization for velocity of:
D
"=ov— 6.12
v = v (6.12)

6.3.2 Viscosity Structure

The various regions of the finite element grid are distinguished by viscosity (Table 6.1).
For the mantle and the subduction zone regions, viscosity is temperature-dependent,
which generates plate-like flow at the surface. We use the viscosity law [e.g., Kohlstedt

et al., 1995]:
E E
/ T/ — T/ i — “ 6.13

wnt

where E, is an activation energy, R = 8.31 J mol™" K™' is the universal gas con-
stant, and we assume a non-adiabatic temperature variation between Ty = 0°C at
the surface and Ty = 2000  C at the core-mantle boundary. We choose an initial in-
terior temperature of T},; = 130000, which is a reasonable value for the Earth. This

corresponds to a dimensionless value of T! . = 0.65, which is close to the steady-

int
state interior temperatures that are produced in this study. We choose an activation
energy of E, = 100 kJ mol™" because this value is large enough to produce plates

and slabs that move as coherent units, but weak enough to prevent the entire mantle
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Table 6.1. Viscosity Variations within the Finite Element Model

Region Dimensionless Viscosity®

MantleP T (T") = 0, (T7,,) exp (RﬁaAT - RTijAT)
Subduction ZoneP nt (T = (1"

Ridge moo= n,(1"=1)

Upper Continent n.. = 1000

Lower Continent e = Mu(Ti)

Asthenosphere® Mos = Mu(T7,)/10

“Weak Zone”* Mwz = M(Lin)

#Viscosity is made dimensionless using (9).

PTemperature-dependent viscosity is described by (13), where 77 . = 0.65 and a
maximum value of 7 = 1000 is enforced.

“The asthenosphere and the weak zone are only included in a few specific models (see

text).

from evolving into a cold, immobile state. The value of n/ (T ) is varied to produce

int
different mantle Rayleigh numbers, Ra,,. The interior viscosity typically decreases
slightly over time because the mantle interior warms to temperatures greater than
T! . = 0.65, increasing Ra,,. Finally, we set a maximum viscosity of /... = 1000 for
all runs. This prevents the extremely large viscosities inherent to (6.13) at 7" = 0,
but also maintains a high constant viscosity at the surface that is not dependent on
the interior viscosity. This feature is useful in an application to the thermal evolution
of the Earth.

The other various regions of the finite element grid (Figure 6.1) have Newtonian
viscosity that does not depend on temperature (Table 6.1). The “ridge” is a region 2

elements wide and 9 deep that has a low viscosity of n. = n! (7" = 1). The weakness

of the ridge allows the oceanic plate to easily pull away from the continent. The
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continent itself is divided into two regions. The upper part (4 elements deep) has a
strong viscosity equal to n/. = 1000, and is thus as strong as the strongest oceanic
lithosphere. The lower continent (5 elements deep) has a viscosity of ;. = n/ (1} ,),
which is close to the viscosity of the mantle interior. We found it necessary to remove
the temperature-dependence of fluid below the lower continent to prevent this material
from cooling and then accreting to the continental base, making it overly-thick. Later,
we study the effects of a low-viscosity asthenosphere beneath the oceanic plate, by
applying a constant viscosity of n., = 0/ (1!.,)/10 to the 4th through 9th elements

from the surface, between the ridge and the subduction zone.

6.3.3 The Subduction Zone

To implement subduction, we apply velocity boundary conditions within, and on the
boundaries of, the subduction zone region (Figure 6.2). On the left-hand edge of the
subduction zone, an imposed horizontal velocity of magnitude v; forces the oceanic
plate into the subduction zone. This material is later forced out of the subduction
zone base by boundary conditions that impose vertical velocity of magnitude v;.
Within the subduction zone, the fluid is forced to turn smoothly by velocity boundary
conditions, also of magnitude v;, but directed tangentially to an arc with radius of
curvature equal to R’ = 0.225, which is the depth of the subduction zone region.
Other boundary conditions include free-slip along the top surface and pinned nodes
along the boundary with the overriding upper continental plate (Figure 6.2). By
enforcing vertical flow along the boundary with the lower continent, we direct flow
within the subduction zone and also generate flow within the lower continent region,
preventing cold material from accumulating there. This set of boundary conditions for
the subduction zone generates stable subduction that can be implemented indefinitely,
as long as the thickness of the thermal boundary layer does not exceed that of the
subduction zone region.

We must choose the speed, v;, with which we force subduction to occur. Because
the oceanic plate is strong, forcing subduction at a speed v; causes the plate velocity,

v, to be equal to v;. To generate convection that is fully dynamic, but that still
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—  Free Slip

Figure 6.2: A detail of the subduction zone region of the finite element grid showing
the velocity boundary conditions used to implement subduction. The large dots
indicate pinned nodes and double-sided arrows indicate free slip boundaries. Large
arrows indicate the direction of the imposed velocity boundary conditions, which
force subduction with a realistic geometry and produce a realistic thermal structure
for the resulting slab. All of the imposed velocities have the same amplitude v;, which
is determined by the iterative procedure described in the text.
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includes the proper amount of dissipation within the subduction zone, we require the
total energy dissipated viscously to be equal to the total potential energy released.

Thus, we choose v; so that ®P¢ = ®¥d 4+ &¥d which, using (6.2), (6.6), and (6.7) gives:

(pe
o + 2y (hS/R)S

(6.14)

This expression gives the speed with which to drive subduction in order for the sub-
duction zone to dissipate the prescribed amount of energy. To use this expression,
however, we must know (', and C'P¢, which are not easily estimated for a potentially
complicated flow pattern. Because the dependence of ), and CP® on v, is weak, we
can estimate these quantities by first forcing the system with a chosen velocity v;_4,
measuring ®'9 (excluding the subduction zone) and ®P° using (6.3) and (6.1), and
then applying (6.2) and (6.6). Applying these estimates for C,, and CP® to (6.14)

yields a new expression for v; that depends on v;_q:

. q)pe/vi_l
Oyl /vt + 2 (ho/R)

v, = v (6.15)
Thus, the proper subduction rate can be calculated using an iterative procedure in
which the effects of applying a speed v;_; are tested by measuring ®¥4 and ®P¢ for
this speed. A new speed v; is then calculated using (6.15) and then tested in the same
manner. This procedure is repeated until the imposed speed does not change by more
than 0.01%. The resulting value of v; is the rate for subduction that balances potential
energy release and the total viscous dissipation, which includes the contribution from
the bending slab. This subduction rate is used to advance the flow field by a single
timestep, and then is used as the initial test velocity for the next timestep. If the
flow field is close to steady-state, convergence occurs in only a few iterations. If the
flow field is changing rapidly, convergence typically requires 10 to 20 iterations.
This iteration procedure produces a flow field for which the total potential energy
release is equal to the sum of the measured viscous dissipation for the mantle and an
expression for the viscous dissipation associated with bending a viscous slab. Thus,

it includes, in a dynamically consistent way, the bending deformation of a potentially
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strong viscous plate, without requiring the grid resolution necessary to model this
deformation accurately. Implementation instead depends on the accuracy of ¢P€
and @4, We can estimate the error involved with measurements of these quantities
by comparing ®P¢ and ®9 for a run in which we do not impose velocity boundary
conditions, in which case we expect ®¥4 = ®P°. For the finite element grid we use,
we find that ®P° is typically greater than ®¥¢ by up to 2% for Ra,, ~ 10° and by up
to 5% for Ra,, ~ 107. This difference is associated with errors in the velocity field.
Potential energy release depends linearly on vertical velocity, as in (6.1), whereas
viscous dissipation depends on the square of velocity in both directions, as in (6.3).
Thus, we expect errors in measurements of 4 to be larger than those for ®P¢. This
is indeed what we find in tests; measurements of ®P° converge more rapidly with
increasing grid resolution than do measurements of ®'9. Because our measurements
of ®¥4 are slightly too small, our method of forcing the viscous dissipation to balance
the potential energy release causes too much viscous dissipation to be placed in the
bending lithosphere. This overestimate could be up to 5% for Rayleigh numbers close

to 107, which are the least resolved of our calculations.

6.3.4 Implementation of the Subduction Zone

To implement this iteration procedure, we modified the finite element code ConMan

[King et al., 1990], which calculates the flow velocity field by solving;:
Ku=f (6.16)

for u, which is a vector of unknown velocities. Here K is the “stiffness” matrix, which
implements the equations of incompressible Stokes flow for the given finite element
grid, and f is a vector that describes the buoyancy forces that drive the flow. The
most time-consuming step in solving for u is inverting K, an operation that must
be performed every time step if the viscosity field changes with time (as it does for
temperature-dependent viscosity). Velocity boundary conditions are implemented by

removing the specified velocities from u, multiplying them by the associated columns
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of K, and then moving the result to the right hand side. Thus:
K,,u,, =f - Zu]‘k]‘ (617)
J

th velocity boundary condition, k; is the jth column of K, the

where u; is the j
subscript r indicates that rows or columns have been removed, and the summation is
over all of the imposed velocity boundary conditions. To change the velocity boundary
conditions by a constant factor, as is necessary to update the imposed subduction zone
velocity from v;_; to v;, it is simply necessary to multiply the quantity >, u;k; by
the appropriate factor. This method allows the imposed velocity to be updated for

each iteration without inverting the stiffness matrix K,. As a result, the iteration

procedure runs quickly and does not add prohibitively to the total computation time.

6.4 Examples of Convection with a Bending Litho-
sphere

To initiate subduction, we first impose a constant subduction velocity of v/ = 500
on an initially isothermal mantle with temperature 7} , = 0.65 and Rayleigh number
Ra,, = 10°. The cold temperature boundary condition at the surface cools the
fluid there and the resulting thermal boundary layer is subducted into the mantle
interior, forming a slab. Once the temperature field ceases to change significantly
with time, it is used as a starting point for runs in which the rate of subduction is
dynamically chosen according method described above. For these calculations, an
effective viscosity for the lithosphere, 7, is chosen so that the viscous dissipation of
the bending slab can be calculated from (6.7). To calculate ®}9, we estimate the plate
thickness i/ using the depth of the T’ = T/ ,erf(1) = 0.55 isotherm. This isotherm
was chosen because it represents a high temperature that is consistently within the
boundary layer, and thus provides a reliable scale for the boundary layer thickness.

As described above, we assume a bending radius of curvature of R’ = 0.225. For

each choice of lithosphere viscosity 1], we allow dynamically-driven subduction to
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proceed until the system has reached an approximate steady-state, which typically
occurs after several thousand time steps. Because, as each system evolves, the mantle
typically warms slightly, the viscosity there decreases, leading to Rayleigh numbers
greater than the initial value of 10°. For each calculation, we present the final value of
Ra,,, calculated based on the average mantle viscosity. Even after the calculation has
reached its “steady state,” quantities such as the plate velocity v, and the subducting
plate thickness h/ continue to change with time, oscillating about some mean value,
as is shown for several different values of 1] in Figure 6.3. Short time-scale variations
in the driving buoyancy field, which occur as the slab interacts with the continent or
the base of the mantle region, could cause this behavior. In addition, slight variations
in the measured value of the plate thickness Ay should have an amplified effect on
plate velocity because the bending resistance depends on the cube of hg, as in (6.7).

As a first example, we apply an effective lithosphere viscosity of n, = 500. A
snapshot of convection at thermal steady state (Figure 6.4) features a flow field and
a temperature structure that is consistent with rigid plate motions and subduction-
dominated flow. This slab originates at the subduction zone (Figure 6.4a) where
the velocity boundary conditions generate a smooth flow of the oceanic lithosphere
into the underlying mantle (Figure 6.4b). The strength of the surface plate assures
a nearly uniform surface speed between the ridge and the subduction zone. The flow
field generated within the lower continent region (Figure 6.4b) results from coupling
to the downward motion of the subducting slab. This flow is important because it
prevents the development of an overly thick continent by constantly removing cold
fluid from the continental base. The temperature field (Figure 6.4a) also contains hot
upwelling plumes that originate at the bottom boundary layer.

For the relatively weak lithosphere with 1] = 10, an average of only 1.1% of the
total viscous dissipation occurs as simulated plate bending within the subduction
zone (Figure 6.3¢c). Thus, for weak lithosphere, bending provides little resistance to
convection and plate motions. Increasing the lithospheric strength to 1 = 100 or
n; = 500, however, causes the viscous dissipation associated with bending to increase

(Figure 6.3c), which leads to lower plate speeds (Figure 6.3a). The slower plates are
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Figure 6.3: A comparison of (a) plate velocity v), (b) plate thickness A, and (c)
the fraction of the total energy dissipation that occurs as plate bending within the
subduction zone, as a function of time. Results are shown on a log scale for four
subducting slabs with ] of 10, 100, 500, and 1000, for which Ra,, is 1.1 x 10°,
1.2 x 10%, 1.5 x 10°, and 2.9 x 10°.
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Figure 6.4: A snapshot of convection that includes a bending slab (n] = 500) and
Ra,, = 1.1 x 10°. This combination leads to an average plate speed of v, = 507
and an average plate thickness of A’ = 0.076. Here, because the slab is weak, only
33.5% of the total viscous dissipation is accounted for by plate bending within the
subduction zone; the rest is dissipated viscously in the mantle. The subduction zone,
ridge, and upper and lower continents are outlined in white for reference. Denoted
by contours in (a) is the temperature field, where the contour interval is 10% of the
total temperature variation across the grid. Shown in (b) is a detail of the subduction
zone and its surroundings, where the flow field is indicated by arrows. Thick arrows
indicate imposed velocities that force fluid through the subduction zone.
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slightly thicker (Figure 6.3b) because they have more time to cool as they travel from
the ridge to the trench. For a bending slab with viscosity n; = 500, the bending
dissipation accounts for 33.3% of the total dissipation (Figure 6.4).

Increasing the plate viscosity still further to 1, = 1000 slows the plate significantly
(Figure 6.3a), which causes it to thicken. The greater plate thickness increases the
bending resistance because @4 depends on the cube of the plate thickness, as shown
by (6.7), and thus leads to a further slowing of the plate. This runaway process
rapidly decelerates the plate (Figure 6.3a) and ultimately causes it to thicken by
nearly a factor of two (Figure 6.3b). Because the plate motion is so significantly
slowed, the deformation occurring within the subduction zone is small compared to
that occurring within the underlying mantle, as evidenced by the average bending
dissipation of only 10.8% (Figure 6.3¢c). The temperature and flow fields at steady-
state (Figure 6.5) show convection occurring primarily beneath a “stagnant lid.”
Although a downwelling in the vicinity of the subduction zone is still evident, it
involves only the hottest few isotherms and consists of speeds that are much larger
than those of the oceanic plate.

Thus, it appears that the total amount of dissipation that can occur within the
subduction zone may be limited. If the subduction zone is too strong, surface plates
are slowed, and thicken until “stagnant lid” convection develops. We have generated
plate-like motions, however, for convection in which 33% of the total viscous dissipa-
tion occurs as plate bending within the subduction zone. This is a large fraction of
the total and demonstrates that subduction zones can provide significant resistance

to convection while still allowing mobile plates at the surface.

6.5 The Temperature Profile of Subducted Slabs

Standard isoviscous boundary layer theory, first applied to the mantle by Turcotte and
Ozburgh [1967], assumes that convective downwelling is symmetrical, which implies
horizontal shortening at the surface. This pure shear representation of downwelling

requires the coldest portion of the thermal boundary layer to stagnate at the surface
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Figure 6.5: Snapshot of convection beneath a “stagnant lid,” generated using Ra,, =
2.9 x 10° and a slab strength of ; = 1000. As in Figure 6.4, contours indicate
temperature and the arrows indicate flow velocities. In this case, the resistance to
bending slows the plate, which causes it to thicken and slow further because resistance
to bending is greater for thicker plates. This runaway process decelerates the plate
to v, = 37 and produces a bending dissipation of only 10.8%. The subsurface flow
velocities, however, are greater and indicate that convection is occurring beneath a
“stagnant lid.”

above the downwelling. Subduction, on the other hand, is characterized by simple
shear along a plate bounding fault, making it inherently asymmetrical. This style
of subduction allows the entire thermal boundary layer to participate in convection,
which should generate slabs that are colder, and thus more negatively buoyant, than
slabs produced by a pure shear mechanism. Here we implement subduction with a
set of velocity boundary conditions that were designed to efficiently move the entire
thermal boundary layer into the mantle interior. The resulting slabs should thus be
colder than slabs produced by methods that require pure shear deformation at the
surface.

To demonstrate this point, we compare our implementation of subduction to a
pure shear implementation in which we treat the subduction zone as a “weak zone”
by removing the velocity boundary conditions and imposing a constant, but low, vis-

cosity of n/,, = 1 in the subduction zone region. The slab that forms (Figure 6.6)
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Figure 6.6: Similar to Figure 6.4, but for a “weak zone” representation of subduction
and for Ra,, = 1.4 x 10°. To implement a “weak zone,” the velocity boundary con-
ditions used in the previous implementation of subduction are removed and constant
viscosity with a value close to that of the mantle interior (here 5/, = 1) is imposed
within the subduction zone. In this case, subduction occurs symmetrically beneath
the edge of the continent, which causes the slab to be thinner and have a smaller
temperature contrast than in previous models where the subduction zone geometry is
imposed (compare to Figure 6.4). Here we find a plate velocity, v; = 496, and a plate
thickness, A, = 0.077, that are about the same as what we found for a bending slab
in which n; = 500 (Figure 6.4), but the viscous dissipation within the “weak zone,”
here 9.6% of the total, is significantly smaller.
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has a smaller temperature contrast than does the slab that arises from an imposed
subduction zone geometry (compare to Figure 6.4). The difference in thermal struc-
ture is more apparent in a cross-section of temperature taken through the base of the
subduction zone (Figure 6.7), which shows that a slab formed using a “weak zone”
is thinner and warmer than a slab formed with either a strong (n; = 500) or a weak
(n; = 10) bending slab. We attribute the decreased negative buoyancy of slabs pro-
duced by a “weak zone” to the decreased efficiency with which pure shear moves cold
fluid from the boundary layer into the mantle. For the “weak zone,” fluid near the
surface moves downward more slowly than does deeper fluid, causing subduction to
be dominated by the hotter material at the base of the boundary layer. Because the
cold surface material does not participate as extensively, the resulting slab is warmer.

We also compare the temperature profiles of the slabs produced here to the profiles
expected for the Earth (Figure 6.7). To do this, we measure temperature as a function
of horizontal distance using the temperature contours of Ponko and Peacock’s [1995]
detailed models of a slab’s thermal structure. We make this measurement at a depth
of 200 km depth because this depth is about twice that of the base of the oceanic plate,
and is thus analogous to the depth of the previously-plotted profiles in Figure 6.7.
To compare temperature profiles, we scale horizontal distance by the approximate
thickness of the oceanic plate, which is about 100 km for Ponko and Peacock’s [1995]
results and about 0.1 in Figure 6.4. We also scale the 1300° and 1400°C temperature
variation in Ponko and Peacock’s [1995] models to the corresponding temperature
variation of 7" = 0.7 in our models. The resulting temperature profiles (Figure 6.7)
match the profiles for both the weak and strong bending slabs better than they match
the profile for the “weak zone” subduction model. Thus, our method for implementing
subduction by imposing its geometry produces a realistic temperature profile for the
subducted slab, and, as described above, this slab has greater negative buoyancy than

slabs produced using only a “weak zone.”
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Figure 6.7: A comparison of temperature profiles through the slab for different im-
plementations of subduction, measured in each case at the depth of the base of the
subduction zone region. The temperature profile is similar for the weak (n; = 10,
dashed line) and the strong (Figure 6.4, n = 500, dash-dotted line) bending slabs,
but the profile for the “weak zone” implementation (Figure 6.6, dotted line) is signif-
icantly thinner and warmer. For comparison, we show temperature profiles measured
from Ponko and Peacock’s [1995] two thermal models of the slab beneath Alaska (solid
lines), which have been rescaled as described in the text to allow a comparison to our
results.
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6.6 Application to Boundary Layer Theory

Boundary layer theory, as it is typically applied to the mantle, suggests that increases
in the viscosity of the mantle interior should result in slower plate velocities at the
surface. We have shown, however, in a few example calculations, that plate velocity
may also depend on the viscosity associated with lithospheric bending as a plate
subducts. We now investigate how changing the mantle’s interior viscosity affects
plate velocities for a convective system in which bending of the lithosphere is an
important aspect of convection. This analysis can be applied to a cooling Earth,
which should experience an increase in its interior viscosity over time.

To vary the mantle Rayleigh number, we apply interior viscosities of 0, ,(T/.,) =
1/3, 1, and 3. If the average interior mantle temperature were to remain constant
at T" = 0.65, these choices of viscosity would produce mantle Rayleigh numbers of
Ra,, = 3x10%, 1x10°, and 3.3x10¢. Typically, some warming causes Ra,, to increase
slightly. Using the same starting temperature field as before, we initiate convection
using different lithospheric viscosities 1; and allow convection to occur until a steady
state is reached. At steady-state and for each lithosphere viscosity, we measure the
average plate velocity v/, plate thickness h{, and the fraction of dissipation occurring
as bending (Figure 6.8).

Several trends are noteworthy. First, as predicted by boundary layer theory, plate
velocity increases with increasing Ra,, (Figure 6.8a), which leads to a thinner oceanic
plate (Figure 6.8b). As we found above for a single value of Ra,,, a significant decrease
in v;, (by nearly a factor of two) is observed as the lithosphere viscosity increases from
n; = 10 to n; = 500 (Figure 6.8a). This decrease in plate velocity is accompanied by
an increase in plate thickness b’ (Figure 6.8b), and by an increase in the fraction of
the total dissipation that occurs as bending (Figure 6.8c). Once lithosphere viscosity
increases beyond 1] = 500, a stagnant lid develops, as we found above for n; = 1000.
The stagnant lid (shown as solid symbols in Figure 6.8) is characterized by much lower
plate velocities (Figure 6.8a), exceptionally thick plates (Figure 6.8b), and decreased
bending dissipation of less than about 10% (Figure 6.8¢).
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Figure 6.8: The variation of (a) plate velocity v/, (b) plate thickness A}, and (c) the
fraction of the total energy dissipation that occurs as plate bending, as a function
of the effective viscosity of the bending plate nj. All results are shown on a log
scale and the three different lines indicate the grouping of results by mantle Rayleigh
number Ra,,. Filled symbols indicate calculations that produce convection beneath
a “stagnant lid” while open symbols indicate plate-like behavior. The large symbols
denote runs in which a low-viscosity asthenosphere is included, which has the effect
of limiting plate thickness and thus preventing the formation of a “stagnant lid.”
Temperature and flow fields for the three plate-like calculations with an asthenosphere
are shown in Figures 6.9 and 6.10.
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We can compare the trends observed in Figure 6.8 with those predicted by Conrad
and Hager [1999b], who discuss a variation of standard boundary layer theory that
includes viscous bending of the lithosphere at a subduction zone. By balancing ®P°

with @4 and ®)4, plate velocity v, can be expressed as:

o pgo(Tine — Ts)lshs/\/T
g Cmnm —I' 277[ (hs/R)B

(6.13)

The thickness of a plate at the time of subduction is determined by halfspace cooling,

which leads to a relationship between plate thickness and plate velocity of:

4L
hs = 2\/kL /v, or v, = % (6.19)

Combining (6.18) and (6.19) yields an expression for plate thickness h:

(1/3)
hsz( ! D34ﬁCmR“’L/D) (6.20)

Ra,,  Ra;—8\/mL/l,
where, following Conrad and Hager [1999b], Ra; is a “lithospheric” Rayleigh number:

o pga(Tznt - TS)RS
Tk

Ra, (6.21)

Using (6.19) and (6.20), we can write the relationship between mantle Rayleigh num-

ber and both plate thickness and plate velocity in terms of a power-law:

hs ~ Ra;® D and v, ~ Ra*’r /D (6.22)
where 3 is a power-law exponent, given in this case by 4 = 1/3. This value for

( was originally obtained from boundary layer theory that did not include bending
slabs [e.g., Turcotte and Oxburgh, 1967], but the above analysis shows that this value

should apply even if the bending dissipation is significant. If, however:

Ray < 8y/7L/I, (6.23)
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it is the clear from (6.20) that the plate thickness hs becomes infinite, in which case the
plate velocity v, approachs zero, and a stagnant lid is formed. This condition occurs
when the bending dissipation is sufficiently large such that v, as expressed by (6.18)
is always smaller than v, expressed by (6.19) [e.g., Conrad and Hager, 1999a]. By
applying (6.21) to (6.23) and making the lithosphere viscosity dimensionless according
to (6.9), we can rewrite the condition for a stagnant lid as:

R®

1> 10—
=" "pss/aL

(6.24)

To apply this equation to our model, we set [ = D, L/D = 1.5, and R/D = 0.225.
This yields a condition for the stagnant lid of 1] > 540, which is independent of mantle
viscosity. We observe a transition to a stagnant lid in the range 500 < n; < 700 for
the two smaller ranges of Ra,, in Figure 6.8, which agrees with theory. For higher
Ra,,, the transition occurs at slightly larger n, indicating a slight dependence on
Ra,,. This deviation from theory may be due to thinning of the oceanic lithosphere
by convective erosion at its base, as discussed below.

For lithosphere viscosities smaller than those for which a stagnant lid develops, the
fraction of total energy dissipation that occurs as bending is independent of mantle
Rayleigh number (Figure 6.8¢). This observation can be predicted by first writing an
expression for the fraction of dissipation that bending represents, and rewriting this

expression in terms of Ra;:

N 00 o .
ovd 4 Y Con, +20h3/R3 T CD3Ra;/Ra,, + 2h3 ‘
Applying (6.20) to (6.25) yields:
pvd 8y/7L/D
ey + o1 T Ra (6.26)

Thus, the fraction of the total dissipation that bending represents should not depend
on Ra,,, but instead on the properties of the lithosphere expressed by Ra;. This is

indeed what we observe; bending dissipation depends more on 5, than on Ra,, in
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Figure 6.8c. For lithospheric bending that approaches the “stagnant lid” limit, as
defined by (6.23), plates are infinitely thick, so the bending dissipation is 100%. For
flow with mobile plates of finite thickness, the maximum bending dissipation should
be smaller than this. Here we observe a maximum value of about 33% (Figure 6.8c),
which is nearly half of the 50 to 60% value that Conrad and Hager [1999a] estimate
for the mantle based on the Earth’s distribution of surface plate velocities. Their
estimate, however, ignores flow beneath continents, which should also be driven by
subducting slabs. To include this portion of the flow, the deep mantle portion of
Conrad and Hager’s [1999a] energy budget analysis should be increased by about two
thirds, which corresponds to the approximate ratio of continent area to ocean area
for the Earth, and also for this analysis. Doing this decreases their estimate of the
fraction of bending dissipation to about 35 to 45%, which, interestingly, is consistent

with the measurements made here.

6.7 The Role of an Asthenosphere

The resistance to plate bending leads to stagnant lid convection because it slows
plate motions, thickening plates and increasing the bending resistance further. This
runaway process thus requires the bending resistance to increase as plate motions are
slowed, a consequence that can be interrupted in one of two ways. First, various stress-
weakening constitutive relations may cause the slab’s effective strength to decrease
once bending stresses increase beyond a certain point. Riedel et al. [1999] suggest that
such weakening may place a maximum on the total amount of viscous dissipation that
can occur within the bending slab. Once this maximum value is reached, increases in
slab age, and thus thickness, do not change the bending resistance, which breaks up
the feedback mechanism that leads to a stagnant lid. Another mechanism, proposed
by Conrad and Hager [1999a, b], could be a process that limits the oceanic plate
thickness to some maximum value. In this case, once the oceanic plate thickness
saturates, the plate bending resistance would remain constant even for a slab with a

Newtonian viscosity.
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There is evidence, in fact, that oceanic plates might not achieve their maximum
possible thickness at the time of subduction. For example, it has been proposed
that plates reach their maximum thickness after about 80 million years, the age
at which the linear relationship between seafloor depth and the square-root of its
age is observed to break down [e.g., Parsons and Sclater, 1977; Stein and Stein,
1992]. One mechanism that might limit plate thicknesses is convective erosion at the
base of the oceanic lithosphere [e.g., Davaille and Jaupart, 1994; Marquart et al.,
1999; Parsons and McKenzie, 1978], which, if important, would remove cold material
below about 100 km, the thickness given by (6.15) for a plate 80 million years old.
Convective instability beneath the oceanic lithosphere could be facilitated by the
presence of a low-viscosity asthenospheric channel that may exist between 100 and
400 km depth [e.g., Hager, 1991]. Although some controversy is associated with the
seafloor flattening observation and the mechanism by it occurs [e.g., Stein and Stein,
1997], we investigate the effects of limiting the maximum plate thickness by adding
a low-viscosity asthenosphere to our calculations.

We introduce an asthenosphere by imposing a constant viscosity with a value
1/10th that of the mantle interior for the 4th through 9th elements from the surface
between the ridge and the subduction zone (Figure 6.1). The mantle region above
this low-viscosity asthenosphere has temperature-dependent viscosity as before, and
therefore continues to behave as a rigid plate. We employ an effective viscosity for
bending of n; = 1000, which produces a “stagnant lid” in calculations without an
asthenosphere (Figure 6.8), and vary the mantle viscosity as before. The results
(Figure 6.8, large symbols), show plate thicknesses that are smaller than is observed
for the stagnant lid (Figure 6.8b) and greater plate velocities (Figure 6.8a). Thus, the
presence of an asthenosphere facilitates plate-like motion in calculations that would
otherwise produce stagnant lid convection.

The velocity and temperature fields produced by these calculations (Figures 6.9
to 6.10) demonstrate how the asthenospheric channel prevents stagnant lid forma-
tion. Because the viscosity of the asthenosphere region is smaller than that of the

the oceanic plate above it, any cold fluid in the asthenosphere is gravitationally more
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Figure 6.9: Temperature (contours, as in Figure 6.4) and flow (arrows) for convection
with a strong bending plate (n; = 1000) and an asthenosphere with constant viscosity

that is about 1/10th that of the mantle interior. Shown are results for (a) a mantle
Rayleigh number of Ra,, = 6.4 x 10° (large open diamond in Figure 6.8) and (b) a
mantle Rayleigh number of Ra,, = 2.1 x 10° (large open square in Figure 6.8). In
both cases, small-scale instability occurs beneath the oceanic plate once it begins to
thicken into the low-viscosity asthenosphere. This process removes cold fluid from
the base of the plate and limits the thickness to which a plate can grow. Because
thick plates cannot form, stagnant-lid convection is averted.
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unstable than it is in the overlying plate, and thus can be removed more easily by
small-scale convection. The downwellings beneath the oceanic plate in Figures 6.9
and 6.10 demonstrate this process of convective removal of cold fluid from the as-
thenosphere. Because plates cannot grow thick, slow plates do not become slower
because of an additional resistance to bending, and a stagnant lid is avoided. Be-
cause, however, the plate viscosity is high, making the bending resistance large, the
plates in these calculations move slowly, which permits flow velocities in the interior
fluid to to be greater than those of the surface plate (Figures 6.9 and 6.10). This
is particularly true at high mantle Rayleigh number (Figure 6.10a), where the rapid
removal of the slab once it leaves the subduction zone bears some resemblance to the
stagnant lid calculations (Figure 6.5). A detailed look at the subduction zone region
(Figure 6.10b), however, shows that surface flow is indeed plate-like. In addition, the
deformation of the descending slab that occurs within the mantle is a property of
the dependence of slab strength on temperature, a characteristic of slabs that is not
well understood and cannot be modeled accurately here. It is possible that a slightly
different viscosity law could produce slabs that are strong enough to remain largely
intact at high Rayleigh number, despite slow-moving plates at the surface.

If small-scale convection or some other process limits the thickness of plates to
some maximum value h,,, the power-law relationships given in (6.22) should apply,
but with a value of 3 < 1/3. To show this, we note that if A, = h,,, the plate velocity
given by (6.18) and (6.19) is no longer relevant. The relative importance of the two
terms in the denominator of (6.18) depend on the fraction of dissipation occurring
as bending. This can be estimated from (6.25), which, if Ra,, is sufficiently large,
shows that the bending resistance should be dominant, even for plate-like flow. In
this case, as discussed by Conrad and Hager [1999b], the plate velocity, as given by
(6.18), depends only on lithosphere viscosity and the buoyancy of the slab, and is
thus independent of mantle viscosity and Rayleigh number. As a result, we expect (3
in (6.22) to be zero.

We test this prediction by measuring the average plate velocity and plate thickness
as a function of Rayleigh number (Figure 6.11) for both weak (1, = 10) and strong
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Figure 6.10: Similar to Figure 6.9, but for a mantle Rayleigh number of Ra,, =
8.2 x 10°. The full flow field of convection shown in (a) features some of the attributes
of the “stagnant 1id” convection shown in Figure 6.5 because the temperature contrast
across the downwelling slab is diminished and the flow velocities in the mantle interior
are larger than those associated with the plate. The detailed view of the subduction
zone region in (b), however, shows that surface motion is, in fact, plate-like. As
we found for smaller Rayleigh number in Figure 6.9, small-scale instability removes

the basal portions of the oceanic plate and prevents the development of a full-scale
stagnant lid.
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Figure 6.11: Log-log plots showing the dependence of (a) plate velocity v/ and (b)
plate thickness 2/ on mantle Rayleigh number Ra,,. Shown are selected results from
Figure 6.8, for a weak bending slab (5, = 10), a strong bending slab (5, = 500), and
a strong bending slab (1, = 1000) for a calculation that includes an asthenosphere.
As shown in Figure 6.3, both v) and h vary significantly with time. Thus, we plot
their mean values for the time period after which steady-state has been achieved.
Error-bars show one standard deviation from this mean, and thus give an estimate
of the uncertainty associated with each measurement. Lines through the points are
the least-squares linear fits to the three data points. According to (6.22), v, should
depend on Ra?’ and A, should depend on Ra_”. Thus, we express the best-fit slope
of each line in terms of the power-law exponent 3, which, if boundary layer theory
applies, should have a value of 3 = 1/3. The measurements made here indicate that
in general 3 ~ 1/3, even if the bending resistance is large (n; = 500), but 8 < 1/3 for
the calculations that include an asthenosphere.
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(n; = 500) bending plates, and for a strong bending plate with an asthenosphere
(n; = 1000). Some uncertainty is associated with these measurements because, as
shown in Figure 6.3, both v, and hy vary significantly with time, making the mea-
surement of a “typical” value somewhat difficult. As before, we measure an average
value at steady-state, but include error-bars with a length of one standard-deviation to
show an the approximate range of uncertainty. As predicted, the calculations without
an asthenosphere (1 = 10 and 500) produce values of 3 near 1/3, even for a strong
bending plate. Some variation is observed, but the expected slopes associated with
B =1/3 could easily fit within the error estimates. The calculation with an astheno-
sphere, however, shows smaller estimates for g of about 0.19 for velocity and 0.24
for plate thickness. In both cases, calculating a slope using only data from the two
larger values of Ra,, would produce an even smaller measurement of 3 (Figure 6.11).
Thus, the addition of an asthenosphere serves to make plate velocity and thickness
less dependent on mantle Rayleigh number. Theory predicts a value of g = 0 if plate
thickness is constant. We can see that our implementation of an asthenosphere does
not produce constant plate thickness with varying Rayleigh number (Figure 6.11b),

which explains measured values of 3 > 0 for velocity (Figure 6.11a).

6.8 Heat Flow and the Thermal Evolution of the
Earth

The relationship between plate velocities and mantle Rayleigh number has implica-
tions for Earth’s thermal evolution because this relationship influences the efficiency
of convective heat transport. The Earth’s primary mechanism for heat loss is the

cooling of oceanic plates, for which the total heat flow can be written as:

(1/2)
N=2D ( p ) ~ Ra® (6.27)

il m

which uses the relationship between v, and Ra,, given by (6.22) [e.g., Turcotte and
Schubert, 1982, p. 280-3]. Here the heat flow is given by N and is made dimensionless
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by dividing by the heat flow expected from conduction occurring alone. Thus N is
analogous to a Nusselt number, which measures the efficiency of heat transfer by
convection. The response of mantle heat flow to changes in Ra,, is measured by the
power-law exponent (3, which, as discussed above, should have a value of 3 ~ 1/3 if
boundary layer theory applies. Thus, as the Earth cools, Ra,, should decrease because
the interior mantle viscosity is thought to depend on temperature. If 3 > 0, this
change should be accompanied by a decrease in N, which slows the mantle’s rate of
cooling. This negative feedback mechanism has the effect of preventing rapid changes
in the temperature of the interior. If # is smaller than the value of 1/3 predicted
by boundary layer theory, this temperature-regulating mechanism is diminished, and
more rapid changes in mantle temperature are permitted. Thus, the response of
convection to changes in mantle interior viscosity, measured by 3, determines the
course of Earth’s thermal evolution.

The variation of either plate velocity or plate thickness with mantle Rayleigh
number (Figure 6.11) produce either measurements of 3 ~ 1/3 for subduction zones
that are either weak (1, = 10) or strong (n; = 500), but 3 < 1/3 for calculations
that include an asthenosphere. The value of 3 applicable for convective heat transfer,
and thus for Earth’s thermal evolution, can also be estimated directly by measuring
the heat flow out of the surface of the finite element calculation. We make this mea-
surement, using the technique developed by Ho-Liu et al. [1987], for both the entire
grid surface (Figure 6.12a), and for the oceanic plate alone (Figure 6.12b). In both
cases, we observe a smaller value of # for calculations that include an asthenosphere.
All of the measurements are smaller than the expected value of 3 ~ 1/3, presumably
because of heat transfer mechanisms that are not associated with the formation of the
oceanic plate. Such mechanisms certainly apply for the total heat flow measurement
(Figure 6.12a) because a significant fraction of this heat flow occurs as conduction
through the continent. This portion of the total heat flow should depend weakly on
Ra,,, which explains the smaller measured values of 3 for the total heat flow (com-
pare Figures 6.12a and 6.12b). Conduction through (as opposed to cooling of) the

oceanic plate may occur as well, which could explain the measurements of 3 < 1/3
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there (Figure 6.12b). Most of the oceanic heat flow, however, occurs close to the
ridge where the plate is thin and cooling of the oceanic plate dominates. This portion
of the heat flow is related to v;/z, as in (6.27). For the calculation that includes
an asthenosphere, we observe a diminished dependence of v, on Ra,, (Figure 6.11a)
because the plate velocity is determined 7, rather than on 7/ . The measurement of
[ ~ 0.17 using oceanic heat flow (Figure 6.12b) can be attributed to the same effect.

For a cooling Farth, lithosphere viscosity should depend on surface temperatures,
which are thought to have deviated by less than 50°C since the Archean [e.g., Holland
and Kasting, 1992]. This implies constant lithosphere strength, so if convection rates
depend on this strength, plate velocities, and thus mantle heat flow, should be be more
constant as the Earth cools than they would be if plate velocities depended solely on
the mantle viscosity. Thus, the calculations for which 5 < 1/3 predict constant heat
flow over time. Small 3 is not, however, produced by a large bending resistance alone.
Instead, the bending resistance must remain constant despite changes in Ra,,, which
requires some mechanism for maintaining either constant subducting plate thickness
or diminished average strength for thicker plates. As discussed above, either of these
two mechanisms are viable possibilities for the Earth.

A diminished value of # has been proposed as a mechanism for explaining an
apparent discrepancy between estimates of Earth’s current rate of secular cooling and
models of the Earth’s thermal history that are based on parameterized convective
heat transport [e.g., Christensen, 1985; Conrad and Hager, 1999b]. The former is
typically expressed by the Urey number, which is the ratio of mantle’s current rate
of heat production to its total surface heat flow. This ratio has been estimated to
have a present-day value of about 0.5 based on estimates of the concentration of
internal heat sources for the primitive mantle [e.g., Christensen, 1985]. However, if
B = 1/3, the mantle is efficient at regulating its internal temperature, which implies
a small amount of present-day secular cooling. In fact, thermal history calculations
suggest that if more than about 15% of the total mantle heat flow represents secular
cooling (Urey number of 0.85), a value of # = 1/3 produces a thermal catastrophe
only one or two billion years ago [e.g., Christensen, 1985]. If, however, § < 1/3, the
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Figure 6.12: Similar to Figure 6.11, but showing measurements of the (a) total heat

flow and (b) heat flow out of the oceanic plate, as a function of mantle Rayleigh
number Ra,,. Here heat flow is expressed as the dimensionless quantity N,which is
normalized by the solution for conduction alone and is thus analogous to a Nusselt
number. The slope, (3, is measured as shown in Figure 6.11, and boundary layer theory
predicts 3 = 1/3. This slope is smaller than expected in all cases, but particularly so
for the calculations that include an asthenosphere.
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mantle is less efficient at regulating its temperature and thus can cool more rapidly,
permitting smaller Urey ratios. Christensen [1985] estimates that Urey ratios of ~ 0.5
are acceptable if 3 ~ 0.1. This is smaller than the estimates of # made here, but it
is possible that, as predicted theoretically by Conrad and Hager [1999b], Earth-like
combinations of mantle Rayleigh number, lithosphere strength, and maximum plate
thickness could yield smaller 3. Such calculations, however, require computational
power beyond the scope of this study.

Christensen [1985] also observed 3 < 1/3 in convection calculations that included
temperature-dependent viscosity. These calculations, however, pay no special atten-
tion to subduction zones, and thus are better described by “stagnant lid” convection
without realistic slabs or surface plates. Our model in which plate motions are re-
sisted by lithospheric bending at subduction zones produces Earth-like plate and slab
behavior, but still produces decreased 3. Other models that generate reasonable sub-
duction by imposing “weak zones” [e.g., Gurnis, 1989] do not yield small 3 because

plate velocities depend on mantle viscosity.

6.9 Discussion

The method for implementing subduction developed here incorporates an assumed
model for subduction zone deformation into a small region of a finite element grid.
Thus, it provides a useful method for incorporating Conrad and Hager’s [1999b] study
of viscous bending for a subducting plate into a larger-scale convecting system with-
out requiring additional numerical resolution. Because this method parameterizes
subduction zone deformation using an energy balance, other models for this defor-
mation can also be easily implemented, as long as an expression for the energy they
dissipate can be written in terms of the gross physical properties of the subduction
zone such as the thickness, velocity and temperature structure of the subducting
plate. In particular, it would be useful to study the effects of different rheologies that
include stress-weakening or a maximum yield stress.

We enforce a realistic geometry for subduction by imposing velocity boundary
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conditions in the vicinity of the subduction zone. As we have shown, this approach
produces a more realistic thermal field for the subducted slab than is produced by
other methods that employ pure shear at the surface. Using velocity boundary con-
ditions, however, has the disadvantage that the dip angle must be pre-imposed and
constant with time. We have found that by using different sets of velocity boundary
conditions, subduction with a dip angle smaller than the 90° angle used here can be
implemented fairly easily. If an expression for the proper dip angle could be deter-
mined from the characteristics of mantle flow, a more fully dynamic representation
of subduction could be implemented by imposing the proper set of velocity boundary
conditions at each time step. If, however, the velocity boundary conditions change
between iterations, the stiffness matrix must be reinverted at each iteration, which
would slow the calculation considerably.

Our method for implementing subduction uses an energy balance between viscous
dissipation and potential energy release to determine the rate for subduction. Because
this energy balance is determined globally, it is unclear how to implement multiple
subduction zones. For example, in a model with two subduction zones, some method
of dividing the viscous dissipation and potential energy release must be developed so
that an expression for the appropriate subduction rate can be determined for both
subduction zone. If the flow associated with each subduction zone were independent,
then a valid solution could be determined by imposing zero velocity at one subduction
zone and using the energy balance method globally to determine the velocity for the
other. The velocity for the first subduction zone could be determined by the same
method, and then the two velocities could be imposed simultaneously to advance the
flow. We would expect an interaction, however, between the flow associated with
neighboring subduction zones, so this method might miss some important aspects of
convection in a multiple subduction zone system.

Due to computational constraints, we were unable to study Farth-like Rayleigh
numbers of 107 — 10%. Nevertheless, we can apply our analysis to the Earth in several
ways. For example, we have found, and theory predicts, that the maximum amount of

bending dissipation that can occur before the formation of a stagnant lid, measured
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here at 33%, should be nearly independent of mantle Rayleigh number. We have
also shown that if some mechanism limits the total bending resistance, stagnant
lid convection is replaced by convection with mobile surface plates whose velocity
is determined by lithospheric strength. Thus, if such a mechanism is present, the
condition for the onset of stagnant lid convection also indicates the onset of convection
characterized by plate velocities that are independent of mantle Rayleigh number.
This condition, predicted by Conrad and Hager [1999b] and verified numerically here,
is given by (6.23) as Ra; < 8\/E7T)L/l5, a condition that does not depend on mantle
interior viscosity. For the Earth, we estimate p = 3300 kg m™>, ¢ = 10 m s™2, a =
3x 107 K™Y, Ty — Ty = 1300 K, &« = 107 m? s™', D = 2500 km, R = 200 km
[Bevis, 1986; 1988], I, = 1000 km, and L = 5000 km. Applying these values to
(6.21) and (6.23), we estimate a critical value for the effective lithosphere viscosity
of m ~ 10%® Pas. This estimate is consistent with other estimates of 1 by De
Bremaecker [1977] and Conrad and Hager [1999a] and is a value typically used in
studies that generate subduction by introducing faults to strong oceanic lithosphere
le.g., Zhong and Gurnis, 1995a, b; Zhong et al., 1998]. Because the mantle’s viscosity
is temperature-dependent, we expect 1; to be somewhat greater than the viscosity of
the underlying mantle. Estimates of the latter are of order 10%! Pa s, so an effective
viscosity for bending of ~ 10%® Pa s is perhaps not unreasonable.

Convection at high Rayleigh number may also have characteristics that cannot
be adequately modeled here. In our models, we could implement higher Rayleigh
number by decreasing the mantle viscosity. This would induce additional small-scale
convection beneath the oceanic lithosphere, even if we did not impose an astheno-
sphere. Thus, in the Earth, a low-viscosity asthenosphere might not be needed for
oceanic plate thicknesses to be limited by convective erosion at their base. On the
other hand, decreasing the mantle viscosity in our models would also serve to weaken
the downgoing slab. In our lowest viscosity calculations that include an asthenosphere
(Figure 6.10), we found that the slab weakens considerably as it descends, causing it
to rapidly pull away from the subduction zone. This behavior resembles that of the

“stagnant lid,” and decreasing the mantle viscosity further might cause the slab to
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fall away from the subduction zone altogether. Certainly both small-scale convection
and the deformation of a downgoing slab are complicated processes that, like plate
bending in subduction zones, depend on the details of the rheology that affect them.
We expect that neither is adequately modeled in these calculations, but that both

should be essential aspects of the style of convection studied here.

6.10 Conclusions

The method developed here for implementing subduction in a numerical model of
convection parameterizes the deformation of a subduction zone within a small re-
gion of a finite element grid. Because we do not attempt to model this deformation
accurately, but instead rely on more detailed local models to do this, we can easily
investigate the effects of different types of subduction zone deformation on mantle
flow. To demonstrate the importance of subduction zones to convection, we imple-
ment a model for bending a viscous plate within the subduction zone. In particular,
we study convection in which oceanic plates maintain their strength as they deform
within the subduction zone. This type of “strong” subduction zone cannot be inves-
tigated using standard methods for implementing subduction because these methods
typically require convergent plate boundaries to be weak.

Using this method, we have shown that plate-like surface motions are produced
even if the bending deformation associated with subduction dissipates 33% of the
mantle’s total convective energy, in which case plate velocities are slowed significantly.
Once the bending dissipation reaches this level, plates are slowed sufficiently that
they become old enough, and thus thick enough at the time of subduction, that the
bending resistance stops plate motion altogether, causing convection to occur beneath
a “stagnant lid.” If, however, some process prevents the bending resistance from
increasing with plate age, plate-like convection can be maintained. One such process
could be small-scale convection beneath old oceanic lithosphere, which could limit
the thickness to which plates can grow, and thus prevent old plates from becoming

too thick to subduct. Various stress-weakening rheologies may also be able to weaken

229



the subducting slab if it begins to become too thick. Whatever process is involved,
it could be an essential aspect of mantle convection that facilitates plate-tectonic
motions at the Earth’s surface, and thus enables Earth to avoid the “stagnant lid”
convection that might apply for Venus or Mars.

If the bending resistance saturates to some constant maximum value, the effec-
tive lithosphere viscosity that applies for plate bending should largely determine the
velocity of plates. We have shown that, for the Farth, an effective lithosphere vis-
cosity of 10?2 Pa s should be sufficient to control plate velocities. If this viscosity
remains constant despite the increases in mantle interior viscosity that we expect for
a cooling Farth, plate velocities, and thus mantle heat flow, should change little over
time. Because convection rates are not determined by the mantle interior viscosity,
the temperature-regulating feedback mechanism that slows convective heat transfer
as the Earth cools is diminished. Thus, an Earth with “strong” subduction zones
should experience more rapid changes in temperature, which is consistent with geo-
chemical evidence that about half of present-day mantle heat flow represents secular
cooling. As a result, we conclude that the deformation associated with plate bending
at subduction zones could be an essential aspect of mantle convection, particularly if
the lithosphere remains strong as it subducts. Not only might this additional bending
resistance slow plate motions, but it could control the efficiency of convective heat

transport, and thus determine the thermal evolution of the Earth.

Acknowledgments. This work was supported in part by National Science Foundation
grant 9506427-EAR, and by a National Science Foundation Graduate Research Fellowship.

We thank Peter Molnar for insightful comments that help improve the manuscript.

230



