



# **Supporting Information**

## The Importance of Anisotropic Viscosity in Numerical Models for Olivine Textures in Shear and Subduction Deformations

## **TEKTONIKA 2024**

Yijun Wang<sup>1,2,\*</sup> Ágnes Király<sup>1,2</sup> Clinton P. Conrad<sup>1,2</sup> Lars N. Hansen<sup>3</sup> Menno Fraters<sup>4</sup>

<sup>1</sup> Centre for Planetary Habitability (PHAB), University of Oslo, Oslo, Norway
 <sup>2</sup> Centre for Earth Evolution and Dynamics (CEED), University of Oslo, Oslo, Norway
 <sup>3</sup> Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN, USA
 <sup>4</sup> Department of Geological Sciences, University of Florida, Gainesville, FL, USA

\* yijun0509wang@gmail.com

Table of contents

- 1. Rheology parameters
- 2. Rotation from the model reference frame to the CPO reference frame and back
- 3. Movement towards the y-direction for the mantle wedge particle
- 4. References

### 1. <u>Rheology parameters</u>

We use a composite rheology where the dislocation and diffusion creep viscosity are computed separately using:

$$\eta_i = \frac{1}{2} A_i^{-\frac{1}{n_i}} d^{\frac{m_i}{n_i}} \dot{\varepsilon}_{ii}^{\frac{1-n_i}{n_i}} exp\left(\frac{E_i + PV_i}{nRT}\right)$$

, where i stands for dislocation or diffusion creep. The effective viscosity will be:

$$\eta_{eff} = \frac{\eta_{diff} * \eta_{disl}}{\eta_{diff} + \eta_{disl}}$$

|                                   | Overriding | Continental | Weak crust | Weak        | Upper    | Lower    |
|-----------------------------------|------------|-------------|------------|-------------|----------|----------|
|                                   | crust      | crust       |            | lithosphere | mantle   | mantle   |
| $A_{disl}(Pa^{-n}s^{-1})$         | 8.57e-28   | 8.57e-28    | 8.57e-28   | 6.51e-15    | 6.51e-15 | 6.51e-16 |
| n <sub>disl</sub>                 | 4          | 4           | 4          | 3.8         | 3.5      | 3.5      |
| $E_{disl}$ (kJ/mol)               | 223        | 223         | 223        | 440         | 530      | 530      |
| $V_{disl}(m^3/mol)$               | 18e-6      | 18e-6       | 18e-6      | 18e-6       | 18e-6    | 18e-6    |
| $A_{diff}(m^m/Pas)$               | 8.88e-15   | 8.88e-15    | 8.88e-15   | 8.88e-15    | 8.88e-15 | 8.88e-15 |
| $E_{diff}$ (kJmol <sup>-1</sup> ) | 375        | 375         | 375        | 335         | 335      | 355      |
| $V_{diff}(m^3/mol)$               | 6e-6       | 6e-6        | 6e-6       | 6e-6        | 6e-6     |          |
| Angle of internal                 | 10         | 1           | 5          | 10          | 15       | 15       |
| friction (°)                      |            |             |            |             |          |          |
| Cohesion (Pa)                     | 10e6       | 1e4         | 1e4        | 10e6        | 20e6     | 20e6     |
| Density $(kg/m^3)$                | 3300       | 3399        | 3300       | 3200        | 3200     | 3200     |

Table SI-1 – Rheology parameters of the subduction model.

# 2. Rotation from the model reference frame to the CPO reference frame and back

Olivine single crystals have an orthorhombic structure, and thus it is expected that the viscosity tensor for a single crystal olivine will have orthotropic symmetry with 9 independent components in the CPO reference frame. In olivine aggregates with multiple single crystals with different orientations, the average viscosity tensor is expected to have a lower symmetry, which means that the viscosity tensor of olivine in our geodynamic model will have monoclinic symmetry in the macroscopic reference frame.

The constitutive equation that relates stress and strain rate utilizes a fourth-rank anisotropic viscosity tensor such that:  $\sigma_{kl} = \eta_{ijkl} * \dot{\varepsilon}_{ij}$ . Here the viscosity tensor  $\eta_{ijkl}$  has 81 independent components. For an olivine aggregate with monoclinic symmetry,  $\eta_{ijkl}$  has 21 independent components in the macroscopic model reference frame. To use Hill's parameters for the anisotropic viscosity tensor (Signorelli et al., 2021), we need to rotate the model into the mean CPO reference frame, where we assume an orthotropic symmetry.

To compute the rotation matrix ( $R_{CPO}$ ) between the model and the CPO reference frame, we first compute the mean orientation of the a-, b-, and c- axes of olivine by taking the eigenvalues and eigenvectors of the orientation matrices for each axis. This method is

equivalent to the Bingham average computation as in ASPECT described by Fraters and Billen (2021). We construct  $R_{CPO}$  from the eigenvectors with the largest associated eigenvalues for each axis (a, b, and c axis) of the olivine texture, which gives:  $R_{CPO}$ 

 $= \begin{bmatrix} max\_eigenvector\_a\_axis(1) & max\_eigenvector\_b\_axis(1) & max\_eigenvector\_c\_axis(1) \\ max\_eigenvector\_a\_axis(2) & max\_eigenvector\_b\_axis(2) & max\_eigenvector\_c\_axis(2) \\ max\_eigenvector\_a\_axis(3) & max\_eigenvector\_b\_axis(3) & max\_eigenvector\_c\_axis(3) \end{bmatrix}$ 

The constitutive equation (equation 1) from the main text in the CPO reference frame is:  $\dot{\varepsilon}_{CPO} = \gamma J (\sigma_{CPO})^{n-1} A : (R'_{CPO}: \sigma_{mod}: R_{CPO}),$ 

where  $\sigma_{mod}$  is the stress in model reference frame. To find the strain rate in model reference frame, we first need to rotate the stress in the model reference frame into the CPO reference frame in order to calculate anisotropic viscosity tensor. Then we rotate the fluidity tensor back into model reference frame. Thus, the constitutive equation that we use in model reference frame is:

 $\dot{\varepsilon}_{mod} = (R_{CPO_{-K}}: (\gamma J (R'_{CPO}: \sigma_{mod}: R_{CPO})^{n-1}A): R'_{CPO_{-K}}): \sigma_{mod}$ 

where  $R_{CPO_K}$  is the rotation matrix that rotates the fourth-rank tensor in Kelvin notation from the CPO reference frame to the model reference frame constructed from  $R_{CPO}$ (Mehrabadi & Cowin, 1990):

 $R_{CPO_K}$ 

$$= \begin{bmatrix} R_{11}^2 & R_{12}^2 & R_{12}^2 & \sqrt{2}R_{12}R_{13} & \sqrt{2}R_{11}R_{13} & \sqrt{2}R_{11}R_{12} \\ R_{21}^2 & R_{22}^2 & R_{23}^2 & \sqrt{2}R_{22}R_{23} & \sqrt{2}R_{21}R_{23} & \sqrt{2}R_{21}R_{22} \\ R_{31}^2 & R_{32}^2 & R_{33}^2 & \sqrt{2}R_{32}R_{33} & \sqrt{2}R_{31}R_{33} & \sqrt{2}R_{31}R_{32} \\ \sqrt{2}R_{21}R_{31} & \sqrt{2}R_{22}R_{32} & \sqrt{2}R_{23}R_{33} & R_{22}R_{33} + R_{23}R_{32} & R_{21}R_{33} + R_{23}R_{31} & R_{21}R_{32} + R_{22}R_{31} \\ \sqrt{2}R_{11}R_{31} & \sqrt{2}R_{12}R_{32} & \sqrt{2}R_{13}R_{33} & R_{12}R_{33} + R_{13}R_{32} & R_{11}R_{33} + R_{13}R_{31} & R_{11}R_{32} + R_{12}R_{31} \\ \sqrt{2}R_{11}R_{21} & \sqrt{2}R_{12}R_{22} & \sqrt{2}R_{13}R_{23} & R_{12}R_{23} + R_{13}R_{22} & R_{11}R_{23} + R_{13}R_{21} & R_{11}R_{22} + R_{12}R_{21} \end{bmatrix}$$
where matrix components  $R_{11}$  in  $R_{222}$  is a comparison of the matrix  $R_{222}$  above

, where matrix components  $R_{ij}$  in  $R_{CPO_K}$  come from the matrix  $R_{CPO}$  above.

#### 3. Movement towards the y-direction for the mantle wedge particle

For the MDM+AV model, we see a transition from a girdle-like texture to a point-like texture in Figure 7a, from time step 13 to 20. During this period, the maximum is moving towards the y-direction in the MDM+AV model, but not in the other models (Figure SI-1). From the velocity gradient tensors in Table SI-2 from time step 13 to 20, we can see that this movement can be explained by the D<sub>23</sub> component of the velocity gradient tensor, where D<sub>23</sub> for MDM+AV (normalized by D<sub>11</sub>) is more than ten times larger than D<sub>23</sub> for ASPECT (D-Rex). D<sub>23</sub> for MDM+AV also follows an increasing trend during these time steps, showing that the ydirection movement is accelerating as the texture re-aligns. Since the velocity gradient of MDM+AV is scaled using the anisotropic viscosity associated with the texture (specifically, the ratio between the ASPECT strain rate and the MDM+AV strain rate, which is computed using the fluidity tensor associated with the texture), we suggest that the y-direction movement reflects the effect of AV.



Figure SI-1. Principal stresses from the deviatoric stress tensors and pole figures of the olivine a-axis from time step 13 to 20.

Table SI-2. Velocity gradient tensors (D) from ASPECT as computed using D-Rex (left column) and MDM+AV (right column). All values are normalized by the  $D_{11}$  component.

| Time step 10.0024220.239840.0378690.0059310.026333-1.04064-0.00677-0.92524Time step 10.0034430.53030.0305150.0059310.028704-0.82578-0.00676-1.03117Time step 10.0032130.6456220.0274710.0052150.026579-0.70757-0.00501-0.93244Time step 10.0052150.026579-0.70757-0.005011.0730650.0253020.0056360.034418-0.57036-0.004741.08099Time step 10.0052230.6057680.0246950.0068950.024501-0.40411-0.005-0.7447410.0055231.1147160.0236480.0086060.039695-0.19413-0.00445-1.04661Time step 11-0.0045310.0071142.1862980.0260230.0118380.0712710.034801-0.00468-1.42407Time step 210.0095670.0252840.0178260.0642650.429204-0.00531-1.2457 | velocity gradient (ASPECT) |          |          |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------|----------|--|--|
| 10.0024220.239840.0378690.0059310.0263331.04064-0.00677-0.92524Time step T0.0034430.53030.0305150.0059310.0287040.0305150.0057030.0287040.032578-0.00676-1.03117Time step T0.0032130.6456220.0274710.0052150.0265790.0274710.0052150.0265790.0274710.0052150.0265790.0253020.0056360.0344180.0253020.0056360.0344180.0253020.0056360.0245010.0246950.0068950.0245010.0246950.0068950.0245010.0236480.0086060.0396950.0236480.0086060.0396950.0236480.0071142.1862980.0260230.0118380.0712710.034801-0.004681.42407Time step TI0.0095670.0252840.0178260.0642650.429204-0.00531-1.2457                                              | Time step                  | 13       |          |  |  |
| 0.0378690.0059310.026333-1.04064-0.00677-0.92524Time step I0.0034430.53030.0305150.0059310.028704-0.82578-0.00676-1.03117Time step I0.0032130.6456220.0274710.0052150.026579-0.70757-0.00501-0.93244Time step I0.0043211.0730650.0253020.0056360.034418-0.57036-0.004741.08099Time step II0.0052330.0246950.0068950.024501-0.40411-0.0050.024501-0.40411-0.005231.1147160.0236480.0086060.039695-0.19413-0.004451.10466Time step II0.00711410.0071142.1862980.0260230.0118380.0712710.034801-0.004681.42407Time step II0.00956710.0095671.480980.0252840.0178260.0642650.429204-0.00531-1.2457                                     | 1                          | 0.002422 | 0.23984  |  |  |
| -1.04064-0.00677-0.92524Time step I0.0305150.0034430.53030.0305150.0059310.028704-0.82578-0.00676-1.03117Time step I0.0032130.6456220.0274710.0052150.026579-0.70757-0.00501-0.93244Time step I0.0043211.0730650.0253020.0056360.0344180.0253020.0056360.0344180.0253020.0056360.0344180.0246950.0068950.024501-0.570360.0068950.0245010.0246950.0068950.0245010.0246950.0086060.0396950.0236480.0086060.0396950.0236480.0071142.1862980.0260230.0118380.0712710.034801-0.00468-1.42407Time step IVI0.0095671.034801-0.00468-1.424070.0252840.0178260.0642650.429204-0.00531-1.2457                                                | 0.037869                   | 0.005931 | 0.026333 |  |  |
| Time step I0.0034430.53030.0305150.0059310.028704-0.82578-0.00676-1.03117Time step I0.0032130.6456220.0274710.0052150.026579-0.70757-0.00501-0.932440.0274710.0052150.026579-0.70757-0.005011.0730650.0253020.0047411.0730650.0253020.0056360.034418-0.57036-0.00474-1.08099Time step II0.0052230.0246950.0068950.0245010.0236480.0068950.0245010.0236480.0086060.039695-0.19413-0.004451.147160.0236480.0071142.1862980.0260230.0118380.0712710.034801-0.004681.42407Time step II0.0095671.1480980.0252840.0178260.429204-0.00531-1.2457                                                                                          | -1.04064                   | -0.00677 | -0.92524 |  |  |
| 10.0034430.53030.0305150.0059310.028704-0.82578-0.00676-1.03117Time step I0.0032130.6456220.0274710.0052150.026579-0.70757-0.00501-0.93244Time step I0.0043211.0730650.0253020.0056360.0344180.0253020.0056360.0344180.0253020.0056360.0344180.0253020.0052230.6057680.0246950.0068950.024501-0.40411-0.005-0.7447410.0055231.1147160.0236480.0086060.039695-0.19413-0.00445-1.046610.0071142.1862980.0260230.0118380.0712710.034801-0.00468-1.42407Time step II0.00956710.0095671.480980.0252840.0178260.0642650.429204-0.00531-1.2457                                                                                            | Time step                  | 14       |          |  |  |
| 0.0305150.0059310.028704-0.82578-0.00676-1.03117Time step I0.0032130.6456220.0274710.0052150.026579-0.70757-0.00501-0.93244Time step I0.0043211.0730650.0253020.0056360.034418-0.57036-0.00474-1.08099Time step I0.0052230.6057680.0246950.0068950.024501-0.40411-0.005-0.74474Time step II0.0055231.1147160.0236480.0086060.0236480.0086060.039695-0.19413-0.00445-1.0466Time step II0.00711410.0260230.0118380.0712710.034801-0.00468-1.42407Time step II0.0095671.1480980.0252840.0178260.429204-0.00531-1.2457                                                                                                                 | 1                          | 0.003443 | 0.5303   |  |  |
| -0.82578-0.00676-1.03117Time step I0.0032130.6456220.0274710.0052150.026579-0.70757-0.00501-0.93244Time step I0.0043211.0730650.0253020.0056360.034418-0.57036-0.00474-1.08099Time step I0.0052230.6057680.0246950.0068950.024501-0.40411-0.0050.024501-0.40411-0.0050.0245010.0236480.0086060.039695-0.19413-0.00445-1.0466Time step II0.00711410.0250230.0118380.0712710.034801-0.00468-1.42407Time step II0.0095671.1480980.0252840.0178260.429204-0.00531-1.2457                                                                                                                                                               | 0.030515                   | 0.005931 | 0.028704 |  |  |
| SeriesTime step0.0032130.6456220.0274710.0052150.026579-0.70757-0.00501-0.93244Time step0.0043211.0730650.0253020.0056360.0344180.0253020.0056360.0344180.0253020.0056360.0344180.0253020.0052330.6057680.0246950.0068950.0245010.0246950.0068950.0245010.0246950.0068950.0245010.0236480.0086060.0396950.0236480.0086060.0396950.0250230.0118380.0712710.034801-0.004681.42407Time step10.0095671.480980.0252840.0178260.0642650.429204-0.00531-1.2457                                                                                                                                                                            | -0.82578                   | -0.00676 | -1.03117 |  |  |
| 10.0032130.6456220.0274710.0052150.026579-0.70757-0.00501-0.93244Time step T0.0043211.0730650.0253020.0056360.034418-0.57036-0.00474-1.08099Time step T0.0052230.6057680.0246950.0068950.024501-0.40411-0.0050.0245010.0236480.0086060.039695-0.19413-0.004451.1147160.0236480.0086060.039695-0.19413-0.004451.10466Time step TT10.0071142.1862980.0260230.0118380.0712710.034801-0.004681.42407Time step TT10.0095671.480980.0252840.0178260.0642650.429204-0.00531-1.2457                                                                                                                                                        | Time step                  | 15       |          |  |  |
| 0.0274710.0052150.026579-0.70757-0.00501-0.93244Time step I0.0043211.0730650.0253020.0056360.034418-0.57036-0.00474-1.08099Time step I0.0052230.6057680.0246950.0068950.024501-0.40411-0.005-0.7447410.0055231.1147160.0236480.0086060.039695-0.19413-0.00445-1.0466Time step II10.0071142.1862980.0260230.0118380.0712710.034801-0.00468-1.42407Time step II0.00956710.0095671.480980.0252840.0178260.0642650.429204-0.00531-1.2457                                                                                                                                                                                               | 1                          | 0.003213 | 0.645622 |  |  |
| -0.70757-0.00501-0.93244Time step I1.0730650.0253020.0053630.034418-0.57036-0.00474-1.08099Time step I0.0052230.6057680.0246950.0068950.024501-0.40411-0.005-0.7447410.0055231.1147160.0236480.0086060.039695-0.19413-0.004451.10466Time step II1.00711410.0071142.1862980.0260230.0118380.0712710.034801-0.004681.42407Time step II0.0095671.1480980.0252840.0178260.429204-0.00531-1.2457                                                                                                                                                                                                                                        | 0.027471                   | 0.005215 | 0.026579 |  |  |
| Interstep10.0043211.0730650.0253020.0056360.034418-0.57036-0.00474-1.08099Time stepInterstepInterstep0.0246950.0052230.6057680.0246950.0068950.024501-0.40411-0.005-0.7447410.0055231.1147160.0236480.0086060.039695-0.19413-0.00445-1.046610.025040.0071142.1862980.0260230.0118380.0712710.034801-0.00468-1.42407Time stepInterstep10.0095671.480980.0252840.0178260.0642650.429204-0.00531-1.2457                                                                                                                                                                                                                               | -0.70757                   | -0.00501 | -0.93244 |  |  |
| 10.0043211.0730650.0253020.0056360.034418-0.57036-0.00474-1.08099Time step T0.0052230.6057680.0246950.0068950.024501-0.40411-0.005-0.74474Time step T0.0055231.1147160.0236480.0086060.039695-0.19413-0.00445-1.0466Time step T10.00711410.0071142.1862980.0260230.0118380.0712710.034801-0.00468-1.42407Time step TT10.0095671.480980.0252840.0178260.0642650.429204-0.00531-1.2457                                                                                                                                                                                                                                               | Time step                  | 16       |          |  |  |
| 0.0253020.0056360.034418-0.57036-0.00474-1.08099Time step T0.0052230.6057680.0246950.0068950.024501-0.40411-0.005-0.74474Time step T0.0055231.1147160.0236480.0086060.039695-0.19413-0.00445-1.0466Time step T10.00711410.0071142.1862980.0260230.0118380.0712710.034801-0.00468-1.42407Time step T10.00956710.0055280.0178260.0252840.0178260.0642650.429204-0.00531-1.24557                                                                                                                                                                                                                                                      | 1                          | 0.004321 | 1.073065 |  |  |
| -0.57036-0.00474-1.08099Time step J10.0052230.6057680.0246950.0068950.024501-0.40411-0.005-0.74474Time step J0.744740.0055231.1147160.0236480.0086060.039695-0.19413-0.00445-1.0466Time step J10.0071142.1862980.0260230.0118380.0712710.034801-0.00468-1.42407Time step J10.0095671.480980.0252840.0178260.0642650.429204-0.00531-1.2457                                                                                                                                                                                                                                                                                          | 0.025302                   | 0.005636 | 0.034418 |  |  |
| Imme step I10.0052230.6057680.0246950.0068950.024501-0.40411-0.005-0.74474Time step IImme step I0.0236480.0055231.1147160.0236480.0086060.039695-0.19413-0.00445-1.0466Time step IImme step I0.0250230.0118380.0712710.034801-0.00468-1.42407Time step IImme step I10.0095671.480980.0252840.0178260.0642650.429204-0.00531-1.2457                                                                                                                                                                                                                                                                                                 | -0.57036                   | -0.00474 | -1.08099 |  |  |
| 0.0052230.6057680.0246950.0068950.024501-0.40411-0.005-0.74474Time step J-0.0055231.1147160.0236480.0086060.039695-0.19413-0.00445-1.0466Time step J10.0071142.1862980.0260230.0118380.0712710.034801-0.00468-1.42407Time step J10.0095671.480980.0252840.0178260.0642650.429204-0.00531-1.2457                                                                                                                                                                                                                                                                                                                                    | Time step                  | 17       |          |  |  |
| 0.0246950.0068950.024501-0.40411-0.005-0.74474Time step III0.0055231.1147160.0236480.0086060.039695-0.19413-0.00445-1.0466Time step III0.0260230.0171142.1862980.0260230.0118380.0712710.034801-0.00468-1.42407Time step III0.0252840.0178260.0642650.429204-0.00531-1.2457                                                                                                                                                                                                                                                                                                                                                        | 1                          | 0.005223 | 0.605768 |  |  |
| -0.40411-0.005-0.74474Time step J0.0055231.1147160.0236480.0086060.039695-0.19413-0.00445-1.0466Time step J0.0071142.1862980.0260230.0118380.0712710.034801-0.00468-1.42407Time step JJJ10.0095671.480980.0252840.0178260.0642650.429204-0.00531-1.2457                                                                                                                                                                                                                                                                                                                                                                            | 0.024695                   | 0.006895 | 0.024501 |  |  |
| Initial10.0055231.1147160.0236480.0086060.039695-0.19413-0.00445-1.0466Time step JJ1.1480980.0260230.0118380.0712710.034801-0.00468-1.42407Time step JJJ10.0095671.480980.0252840.0178260.0642650.429204-0.00531-1.2457                                                                                                                                                                                                                                                                                                                                                                                                            | -0.40411                   | -0.005   | -0.74474 |  |  |
| 10.0055231.1147160.0236480.0086060.039695-0.19413-0.00445-1.0466Time step J0.0071142.1862980.0260230.0118380.0712710.034801-0.00468-1.42407Time step JJJ10.0095671.480980.0252840.0178260.0642650.429204-0.00531-1.2457                                                                                                                                                                                                                                                                                                                                                                                                            | Time step                  | 18       |          |  |  |
| 0.0236480.0086060.039695-0.19413-0.00445-1.0466Time step J-1.04660.0071142.1862980.0260230.0118380.0712710.034801-0.00468-1.42407Time step JJ10.0095671.480980.0252840.0178260.0642650.429204-0.00531-1.24557                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                          | 0.005523 | 1.114716 |  |  |
| -0.19413-0.00445-1.0466Time step J0.0071142.1862980.0260230.0118380.0712710.034801-0.00468-1.42407Time step JJ1.480980.0252840.0178260.0642650.429204-0.00531-1.2457                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.023648                   | 0.008606 | 0.039695 |  |  |
| Time step J10.0071142.1862980.0260230.0118380.0712710.034801-0.00468-1.42407Time step J-1.4240710.0095671.480980.0252840.0178260.0642650.429204-0.00531-1.2457                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.19413                   | -0.00445 | -1.0466  |  |  |
| 0.007114       2.186298         0.026023       0.011838       0.071271         0.034801       -0.00468       -1.42407         Time step >       -       -         0.025284       0.017826       0.064265         0.429204       -0.00531       -1.24557                                                                                                                                                                                                                                                                                                                                                                            | Time step 19               |          |          |  |  |
| 0.026023       0.011838       0.071271         0.034801       -0.00468       -1.42407         Time step J       J       J         0.009567       1.48098         0.025284       0.017826       0.064265         0.429204       -0.00531       -1.2457                                                                                                                                                                                                                                                                                                                                                                              | 1                          | 0.007114 | 2.186298 |  |  |
| 0.034801-0.00468-1.42407Time step 2110.0095671.480980.0252840.0178260.0642650.429204-0.00531-1.24557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.026023                   | 0.011838 | 0.071271 |  |  |
| Time step 210.0095671.480980.0252840.0178260.0642650.429204-0.00531-1.24557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.034801                   | -0.00468 | -1.42407 |  |  |
| 10.0095671.480980.0252840.0178260.0642650.429204-0.00531-1.24557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Time step 20               |          |          |  |  |
| 0.0252840.0178260.0642650.429204-0.00531-1.24557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                          | 0.009567 | 1.48098  |  |  |
| 0.429204 -0.00531 -1.24557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.025284                   | 0.017826 | 0.064265 |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.429204                   | -0.00531 | -1.24557 |  |  |

### velocity gradient (MDM+AV)

| 1        | 0.000445 | 0.238886 |
|----------|----------|----------|
| 0.006959 | 0.024527 | 0.461423 |
| -1.0365  | -0.1187  | -1.02453 |

|         | 1 | 0.012006 | 0.454329 |
|---------|---|----------|----------|
| 0.10641 | 4 | 0.037844 | 0.33671  |
| -0.7074 | 8 | -0.07932 | -1.03784 |

| 1        | 0.022698 | 1.886914 |
|----------|----------|----------|
| 0.194041 | -0.18287 | 0.173842 |
| -2.06796 | -0.03275 | -0.81713 |

| 1        | -0.01835 | 1.764435 |
|----------|----------|----------|
| -0.10747 | 0.446245 | 0.737777 |
| -0.93784 | -0.1015  | -1.44625 |

| 1        | 0.033665 | 0.523586 |
|----------|----------|----------|
| 0.159165 | -0.05582 | 0.706111 |
| -0.34928 | -0.14409 | -0.94418 |

| 1        | 0.041765 | 1.236822 |
|----------|----------|----------|
| 0.17884  | 0.13594  | 0.959895 |
| -0.21539 | -0.10772 | -1.13594 |

| 1        | 0.023572 | 2.766975 |
|----------|----------|----------|
| 0.086232 | 0.55458  | 1.500466 |
| 0.044044 | -0.09851 | -1.55458 |

| 1        | 0.066254 | 1.812826 |
|----------|----------|----------|
| 0.175092 | 0.351911 | 1.509836 |
| 0.525376 | -0.1247  | -1.35191 |

## **References**

- Fraters, M. R. T., & Billen, M. I. (2021). On the Implementation and Usability of Crystal Preferred Orientation Evolution in Geodynamic Modeling. *Geochemistry, Geophysics, Geosystems, 22*(10). https://doi.org/10.1029/2021GC009846
- Mehrabadi, M. M., & Cowin, S. C. (1990). Eigentensors of linear anisotropic elastic materials. *The Quarterly Journal of Mechanics and Applied Mathematics*, *43*(1), 15–41. https://doi.org/10.1093/qjmam/43.1.15
- Signorelli, J., Hassani, R., Tommasi, A., & Mameri, L. (2021). An effective parameterization of texture-induced viscous anisotropy in orthotropic materials with application for modeling geodynamical flows. *Journal of Theoretical, Computational and Applied Mechanics*, 6737. https://doi.org/10.46298/jtcam.6737