
Chapter 4E�ects of Plate Bending and FaultStrength at Subduction Zones onPlate DynamicsPublished in Journal of Geophysical Research by C. P. Conrad and B. H. Hager, 104,17551-17571, 1999. Copyright by the American Geophysical Union.Abstract. For subduction to occur, plates must bend and slide past overriding platesalong fault zones. Because the lithosphere is strong, signi�cant energy is required forthis deformation to occur, energy that could otherwise be spent deforming the man-tle. We have developed a �nite element representation of a subduction zone in whichwe parameterize the bending plate and the fault zone using a viscous rheology. Byincreasing the e�ective viscosity of either the plate or the fault zone, we can increasethe rates of energy dissipation within these regions and thus decrease the velocity ofa plate driven by a given slab buoyancy. We have developed a simple physical theorythat predicts this slowing by estimating a convecting cell's total energy balance whiletaking into account the energy required by inelastic deformation of the bending slaband shearing of the fault zone. The energy required to bend the slab is proportionalto the slab's viscosity and to the cube of the ratio of its thickness to its radius ofcurvature. The distribution of dissipation among the mantle, lithosphere, and faultzone causes the speed of a plate to depend on its horizontal length scale. Using the129



observation that Earth's plate velocities are not correlated to plate size, we can con-strain the lithosphere viscosity to be between 50 and 200 times the mantle viscosity,with higher values required if the fault zone can support shear tractions �> 50 MPaover 300 km. These subduction zone strengths imply that the mantle, fault zone,and lithosphere dissipate about 30%, 10%, and 60% of a descending slab's poten-tial energy release if the slab is 100 km thick. The lithospheric component is highlydependent on slab thickness; it is smaller for thin plates but may be large enoughto prevent bending in slabs that can grow thicker than 100 km. Subduction zonestrength should be more stable than mantle viscosity to changes in mantle temper-ature, so the controlling in
uence of subduction zones could serve to stabilize platevelocities over time as the Earth cools. Because the \details" of convergent plateboundaries are so important to the dynamics of plate motion, numerical models ofmantle 
ow should treat subduction zones in a realistic way.4.1 IntroductionThe tectonic motions of Earth's plates are thought to represent the upper boundarylayer of convection in the mantle. This boundary layer founders in a few localizeddownwellings known as subduction zones in which one plate dives beneath anotherinto the mantle's interior. It is thought that the negative buoyancy associated withcold, dense slabs drives plate motions by pulling on the surface plates to which theseslabs are attached [e.g., Chapple and Tullis, 1977; Forsyth and Uyeda, 1975; Hagerand O'Connell, 1981; Lithgow-Bertelloni and Richards, 1995]. The cold temperaturesof the boundary layer make it not only denser but sti�er than the mantle, a factthat has important implications for convection in the mantle. For example, severalauthors [e.g., Bunge and Richards, 1996; Davies, 1988; Gurnis and Zhong, 1991] havenoted that the long-wavelength structure of mantle 
ow is at least partly controlledby the existence of strong surface plates.Convection of a 
uid with a strong upper boundary layer has been studied byseveral authors. In 
uids with temperature-dependent viscosity, Jaupart and Parsons130



[1985] found that two length scales of instability are possible. For large viscositycontrasts between the boundary layer and the underlying 
uid, deformation of theentire upper boundary layer becomes su�ciently di�cult that it cannot participatein convection. In this case, short-wavelength instabilities develop below a \rigid lid."For intermediate viscosity contrasts the upper boundary layer can participate in theconvective circulation, but its strength produces wavelengths that are longer thanwould be expected for an isoviscous 
uid. Solomatov [1995] describes this convectiveregime as a transitional one between the isoviscous and the rigid lid regimes, dis-tinguished by the signi�cant resistance to 
ow o�ered by the cold boundary layer.This resistance can rival that due to shearing of the interior, meaning that the strongupper boundary layer is important in determining convective behavior.Because the boundary layer is so important, the details of how it deforms should beimportant as well. In standard isoviscous boundary layer theory, �rst used to describemantle convection by Turcotte and Oxburgh [1967], downwellings are symmetrical andresult in horizontal shortening of the material at the surface above them. Thus, somematerial at the surface stagnates above the descending plume while cold material fromeither side 
ows beneath it. The downwellings associated with plate-scale convectionin the mantle do not behave in this manner. Instead, in a subduction zone, oneplate bends and descends into the mantle beneath another, even if both plates arecomposed of oceanic lithosphere. This one-sided downwelling allows more of thethermal buoyancy of the boundary layer to participate in driving plate motions thanis achieved in the rigid lid or isoviscous styles of convection. It is not clear, however,if this increased buoyancy is o�set by the increased resistance to deformation imposedby the subducting plate's strength.There is evidence that resistance to convection is created by the subduction zone.First, the seismicity of Wadati-Benio� zones illuminates the location of the slab [e.g.,Isacks and Barazangi, 1977; Giardini and Woodhouse, 1984]. The fact that energy isreleased by earthquakes within the slab indicates that the descending lithosphere mustgenerate at least some resistance to mantle convection. In addition, the focal mecha-nisms associated with this seismicity seem, in some cases, to indicate a stress pattern131



in the slab characteristic of bending as the slab begins to descend, and unbending asit straightens out and continues into the mantle [e.g., Bevis, 1986; Hasegawa et al.,1994; Kawakatsu, 1986]. The dissipation of energy within the slab as it both bendsand unbends indicates that at least some of the bending deformation is inelastic andis undone by more inelastic deformation in an unbending process [e.g., Chapple andForsyth, 1979].The presence of inelastic deformation in the slab is indicative of the type of rhe-ology that controls the slab's behavior. The topography and gravity of trenchesassociated with subduction can be explained by theoretical models of the bending ofan elastic plate � 30 km thick [e.g., Hanks, 1971; Watts and Talwani, 1974]. If theradius of curvature of a bending plate is R = 200 km [e.g., Bevis, 1986], its Young'smodulus is E = 70 GPa [e.g., Turcotte and Schubert, 1982, p. 106], and its Poisson'sratio is � = 0:25, we estimate, following Turcotte and Schubert [1982, p. 114], thatthe maximum bending stresses in the plate must be of order 6000 MPa. This �gureis about an order of magnitude larger than the maximum strength of oceanic litho-sphere [e.g., Kohlstedt et al., 1995], so at most only 10% of elastic bending stressescan be supported. The remaining stress must be relaxed by an inelastic deformationmechanism. For an elastic-plastic or elastic-brittle rheology, elastic stresses greaterthan the maximum yield stress are relieved by fracturing of the rock [e.g., Turcotteand Schubert, 1982, pp. 341-345]. This type of rheology can produce the seismicitydistributions of the Benio� zones, which are, perhaps coincidentally, also � 30 kmwide [e.g., Hasegawa et al., 1994; Jarrard, 1986; Kawakatsu, 1986]. In a viscoelasticrheology, viscous strains relax large elastic stresses [e.g., Turcotte and Schubert, 1982,pp. 337-340]. We expect the lithosphere to exhibit some viscous properties becauseit is partly composed of cold mantle material, and the mantle certainly behaves as ahighly temperature-dependent viscous 
uid. In fact, some authors have shown thattrench topography can be explained by the loading of a viscous plate [e.g., De Bre-maecker, 1977], by viscous stresses associated with bending [e.g.,Melosh and Raefsky,1980], or by viscous coupling of the surface to the negative buoyancy of the slab [e.g.,Sleep, 1975; Zhong and Gurnis, 1994]. 132



The oceanic lithosphere probably experiences all of the above mentioned defor-mation mechanisms at various stages during subduction, making a full description ofthe applicable constitutive relation extraordinarily complicated. We recognize, how-ever, that all of the deformation mechanisms, with the exception of elastic bending,dissipate energy and thus retard the 
ow of the lithosphere into the mantle. In whatfollows, we estimate the energy dissipated by a deforming slab assuming viscous 
owand compare it to the energy dissipated by 
ow in the underlying mantle. In doingso, we are able to determine how plate velocities depend on the material strength ofthe subducting lithosphere, which we express as the lithosphere's \e�ective" viscosity.Because we are simply performing an energy balance, this parameter can be thoughtof as allowing viscous 
ow to dissipate the same energy that would be dissipated ifall of the complicated deformation mechanisms were included. Because the e�ectivelithosphere viscosity results from some combination of many deformation mechanismswhose relative and absolute strengths are not known, we treat the e�ective viscosityas a variable upon which plate velocity depends. Using Earth's observed distributionof plate velocities, we hope to constrain the value of this parameter and, as a result,the importance of subduction to the large-scale convective structure of Earth.4.2 Viscous DissipationOne way to determine the relative importance of the slab, fault zone, and mantle isto compare the energy dissipated in deforming each of these regions. To do this, westart with conservation of momentum for a continuous medium:�@ui@t + �uj @ui@xj = fi + @�ij@xj (4.1)where fi is a body force, �ij is the stress, � is density, t is time, and ui and xiare the velocity and distance components. To obtain an expression for energy, wemultiply (4:1) by ui and integrate over a volume V . After some manipulation [e.g.,133



Chandrasekhar, 1961, pp. 12-14], we obtain12 ZV � @@tu2idV + 12 ZS �u2iujdSj (4.2)= ZS ui�ijdSj � ZV �ij @ui@xj dV + ZV uifidVwhere S is the surface of the volume V . These �ve terms express the energy balancefor viscous 
ow, and only the last two contribute signi�cantly for the mantle. Theleft-hand side gives the rate at which the 
uid's kinetic energy changes with time andis negligible if the Reynolds number is low, as it is for the mantle. The �rst term onthe right-hand side is the rate at which stresses do work on the boundary of V . If Vis the volume of a closed convecting cell with free-slip boundary conditions, this termis zero.The middle term on the right-hand side of (4:2) represents the rate at which workis done on the medium by the deformation. It is useful to decompose the total stress�ij into its pressure p and deviatoric �ij components:�ij = �p�ij + �ij (4.3)where �ij is the Kronecker delta function. De�ning the strain rate_�ij = 12  @ui@xj + @uj@xi! (4.4)the rate of work integral can be writtenZV �ij @ui@xj dV = ZV (�p _�ii + �ij _�ij) dV (4.5)The �rst term on the right-hand side of (4:5) represents the increase in internal energydue to changes in volume, while the second term represents strain energy dissipatedby shearing of the material.At this point, we make the simplifying assumptions that the material is incom-pressible, _�ii = 0, and that its rheology can be expressed as that of a 
uid, with an134



e�ective viscosity � that can be a function of position:�ij = 2� _�ij (4.6)Then the rate at which work is done on the material is�vd = ZV �ij _�ijdV = 2 ZV � _�ij _�ijdV (4.7)where �vd is the total rate of viscous dissipation.For an isoviscous mantle the 
uid deformation within a convecting cell is charac-terized by a surface plate moving with velocity vp and a return 
ow governed by thefree-slip condition at the core-mantle boundary. The resulting viscous 
ow producesshear stresses that can be determined by analogy to asthenospheric counter
ow [e.g.,Turcotte and Schubert, 1982, pp. 232-236]. The result is �xz = 3�mvp(D � z)=D2,where �m is the mantle viscosity, D is the mantle thickness, and z is depth (positivedownward). For a cell of length L we use (4:7) to estimate �vdm , the total rate ofviscous dissipation in the mantle�vdm = 3�mv2p (A+ Cm) (4.8)where �vdm , as for all subsequent expressions for dissipation, is per unit length per-pendicular to the direction of 
ow. Here A is the aspect ratio of the convecting cell,equal to the greater of L=D or D=L. In de�ning A, we recognize that for L < Dthe dominant 
ow is similar to the one described above but in the vertical directionand produced by the downgoing slab (also moving with speed vp) and the free-slipboundary associated with the return upwelling. In addition, we recognize that toconserve mass, a return circulation must occur near the two shorter edges of the cell.The variable parameter Cm in (4:8) accounts for the additional energy dissipated bythis circulation and depends on how sharply streamlines of the 
ow are forced tobend at corners. Simple numerical tests show that (4:8) accurately describes viscousdissipation that occurs in a box with two boundaries that are free-slip and two that135



move with velocity vp. We also �nd that Cm does not depend on the aspect ratio A.The remaining term in (4:2) gives the rate at which body forces do work on the
uid. We refer to this term as �pe because, for the mantle, it represents the rate atwhich gravitational potential energy is released. The net work done by gravity onthe hydrostatic component of the density �eld is zero for a closed convecting cell, soonly the horizontally varying component of the density �eld contributes to �pe. Fora Boussinesq 
uid whose density varies with temperature, �pe is given by�pe = ZV �g� [Tm � T (x; z)]vz(x; z)dV (4.9)where vz is the vertical component of velocity (positive downward), T is temperature,Tm is the mantle interior temperature, � is the thermal expansivity, and g is theacceleration due to gravity. For slab driven 
ow, only the descending slab contributesto (4:9). To perform this integral, we must integrate over the temperature pro�le ofthe subducting slab, which changes as the slab descends and warms. The heat thatwarms the slab is lost from the neighboring mantle, so the integral of the temperaturepro�le along horizontal planes should not vary with depth [e.g., Turcotte and Schubert,1982, pp. 176-178]. Thus we can simply use the integral of the surface temperaturepro�le in estimating (4:9). This pro�le is that of a cooling boundary layer, generatedas the lithosphere travels across Earth's surface, and can be represented as an errorfunction [e.g., Turcotte and Schubert, 1982, pp. 163-167]:T (z) = �T erf (z=hs) + Ts (4.10)where Ts is the temperature at the surface, �T = Tm�Ts is the temperature di�erencebetween the mantle and the surface, and hs is the thickness of subducting lithosphere,de�ned here in terms of the time tc during which the boundary layer has cooled:hs = 2p�tc = 2q�L=vp (4.11)where � is the thermal di�usivity. Then the total rate of potential energy release136



provided by the slab is, in two dimensions�pe = �g��Tvzls Z 10 erfc� zhs� dz = �g��Tvplshsp� (4.12)where ls is the length of the subducted portion of the slab and we have assumed thatthe slab velocity is the same as the surface plate velocity vp.The energy balance given by (4:2) is then simply a balance between viscous dis-sipation and potential energy release, and can be simpli�ed to �vdm = �pe. Equatingthese terms using (4:8) and (4:12) yields an expression for the plate velocity:vp = �g��Thsls3p��m (A+ CM ) (4.13)Combining (4:13) and (4:11), setting ls = D and L > D, and solving for vp yieldsvp = �4�L9� �1=3 �g��TD�m !2=3�LD + Cm��2=3 (4.14)This expression for velocity is a variation of a similar expression given by standardboundary layer theory [Turcotte and Schubert, 1982, p. 282]. The di�erences arise inour estimate of the viscous dissipation in (4:8), where we assume that the boundarycondition at the mantle's base is free slip and that a slab's velocity is equal to that ofits attached surface plate. For a more complicated system with a strong lithospherethat subducts, the added viscous dissipation in the subduction zone should serveto slow the plate by adding terms to the denominator of (4:13). To determine thein
uence of the subduction zone, we have developed a �nite element model of aconvecting system that speci�cally includes a subduction zone.4.3 Finite Element ModelVarious numerical parameterizations of a subduction zone have been used to study avariety of problems. These are generally either local studies designed to investigatethe dynamics of the subduction zone itself [e.g., Gurnis and Hager, 1988; Houseman137



and Gubbins, 1997; Melosh and Raefsky, 1980; Toth and Gurnis, 1998; Zhang et al.,1985; Zhong and Gurnis, 1994] or large-scale studies designed to look at the e�ect ofvarious parameterizations of subduction zones on mantle convection of a global scale[e.g., Bercovici, 1995; Bunge and Richards, 1996; Davies, 1989; Hager and O'Connell,1981; King and Hager, 1994; King et al., 1992; Puster et al., 1995; Zhong and Gurnis,1995a, b]. Due to computational constraints, the local studies generally have �nerspatial resolution than the global models and thus can more realistically incorporatesome of the more detailed structures of a subduction zone. In particular, Housemanand Gubbins [1997], Melosh and Raefsky [1980], and Zhang et al., [1985] assign arealistic curved geometry to an isolated subducting plate and look at the bendingof that plate as it descends. Zhong and Gurnis [1994] and Zhong et al. [1998] alsointroduce a fault zone into an otherwise regular grid in an e�ort to parameterize theinteraction between subducting and overriding plates. Finally, Toth and Gurnis [1998]allow a fault zone's geometry to evolve in response to dynamical forces associated withthe initiation of subduction.Detailed local models of subduction zones demand �ne numerical resolution andcomplex grid geometry, so it is di�cult to incorporate these models into larger-scaleglobal models. To get around this problem, the detailed structure of the subductionzone is generally parameterized in a simple way in an e�ort to mimic its e�ects onmantle 
ow. Several methods have been used. One is to impose piecewise continuousvelocity boundary conditions at the surface to force plate-like behavior [e.g., Hagerand O'Connell, 1981; Davies, 1988; Bunge and Richards, 1996]. Another approachis to implement plates by combining strongly temperature-dependent viscosity withlow-viscosity weak zones that represent plate boundaries [e.g., Davies, 1989; Gurnisand Hager, 1988; King and Hager, 1990; Puster et al., 1995]. Both approaches, whileindeed allowing the plates to move in a plate-like fashion, do not take into account thedetailed structure of the subduction zone and its dynamics. A few studies include afault zone that can support shear stresses and allow di�erential displacements acrossits width [e.g., Toth and Gurnis, 1998; Zhong and Gurnis, 1994, 1995a, b; Zhonget al., 1998]. This fault zone parameterizes the interaction between the subducting138



and overriding plates and allows for more realistic subduction geometry, in that oneplate overrides another and the entire thermal buoyancy of the subducting plate isincorporated into driving convection. These studies, however, do not speci�callytreat the deformation within the lithosphere as it subducts. This deformation maybe important in resisting plate motions, so a more complete analysis of a subductionzone's e�ect on mantle 
ow is needed.In this study we incorporate the important features of local subduction modelsin a larger-scale convecting system. In particular, we include a smoothly bendingsubducting slab and an adjacent fault zone in a viscous model of a single convectioncell. Both are modeled as viscous 
uids in a �nite element calculation using ConMan,a �nite element code that solves the coupled thermal di�usion and incompressibleNavier-Stokes equations for both Newtonian and non-Newtonian rheology [King etal., 1990]. The �nite element grid we used includes a lithosphere, mantle, and viscousfault zone, as shown in Figure 4.1. Its length L is 1500 km, and its depth D is 1200km.An accurate representation of deformation in the subducting slab is facilitatedin the design of our �nite element grid. The curved surface of the slab is parallelto the direction of its descent into the mantle, allowing it to 
ow into the mantlein a smooth, continuous fashion, as real slabs do in Earth. A rectangular grid ofcomparable resolution, which could have been more easily implemented, would notallow this type of slab behavior because the slab edges would consist of corners in thegrid, which would alter its 
ow. The surface of the slab is drawn so that the verticalcomponent of the slab velocity at each point increases as the error function of the arclength around the slab, as described by Melosh and Raefsky [1980]. We use a slabdip angle of 90� and a radius of curvature R of 240 km. This surface describes thecurved upper surface of the subducting slab. The rest of the grid, which representsboth the lithosphere and mantle, is �lled in below this surface as shown in Figure 4.1and is assigned a temperature-dependent mantle viscosity �m. Free-slip is imposedalong all horizontal and vertical surfaces, and all corners are pinned.The interaction between the subducting and overriding plates is parameterized139
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by a viscous fault zone one element wide, bounded above by an overriding arc-wedgeregion whose lower boundary is pinned (Figure 4.1). We use a fault zone of lengthlf = 782 km and width wf = 10:7 km and assign a temperature-independent viscosity�f , which allows the fault to support shear stress. The shear strain rate across thefault zone is given by _�f = 12vp=wf , so the shear stress within the fault zone �f isgiven by �f = 2�f _�f = �f vpwf (4.15)The strength of a viscous fault zone, represented by the stress it can support, is thusa function of both the imposed viscosity and the velocity of the subducting plate.Real fault zones are not, of course, composed of viscous 
uids but of rocks that cansupport some degree of frictional shear stress. Our viscous fault zone supports shearstresses between the subducting plate and the overriding wedge and thus models thisessential aspect of a real fault zone.The overriding wedge region (Figure 4.1) is also a viscous 
uid with a viscosity100 times that of the mantle, but it does not participate in the main convective 
ow.Instead, free-slip boundary conditions along the grid edges allow a small circulationof material between the fault zone and the wedge. This circulation is minor and doesnot a�ect the dynamics of the subducting plate system, as demonstrated below.We assign an error function temperature pro�le to the oceanic lithosphere as givenby (4:10), using Ts = 273 K, �T = 1200�C, � = 1 mm2 s�1, and a preimposed coolingtime tc. Initially, this temperature pro�le is imposed across the entire surface of thegrid. Velocity boundary conditions along the surface of the oceanic plate are used toadvect this temperature pro�le into the mantle, where thermal di�usion allows somewarming of the slab as it descends. Because the �nite element grid is not long enoughfor signi�cant thickening of the thermal boundary layer to occur as it traverses thebox, the imposed cooling time tc dictates the approximate thickness of the slab, as in(4:11).The cold temperatures of the oceanic lithosphere are responsible for its increasedstrength relative to the mantle below. Temperature-dependent viscosity �(T ) is gen-141



erally given for dislocation 
ow as [e.g., Kohlstedt et al., 1995]�(T ) = �m exp� EaRT � EaRTm� (4.16)where R = 8:31 J mol�1 K�1 is the universal gas constant, Ea is the activation energy,and mantle temperature Tm yields mantle viscosity �m [King, 1991]. This viscositylaw is only applied to the lithosphere and mantle, and a maximum viscosity of 104�mis enforced. Although the above viscosity law does not account for the variety ofdeformation mechanisms that may occur in the subducting lithosphere, we accountfor the strengthening or weakening e�ects of these mechanisms by allowing Ea to vary.Thus (4:16) can be thought of as de�ning the e�ective viscosity of the lithosphere.Once the velocity boundary conditions have advected the temperature �eld todepth, they are replaced by free-slip boundary conditions. The temperature �eldthen provides negative buoyancy with which the slab can drive mantle 
ow. Thisis achieved by making the Boussinesq approximation and by imposing a nonzerocoe�cient of thermal expansion, �, everywhere except for the overriding wedge. Weallow the dense slab to drive convection until a thermally consistent steady state modelof mantle 
ow is achieved. In other words, the plate descends under its own weightwith a constant velocity vp, and the thermal buoyancy of the plate is determined by thedescent of a slab with this same velocity. We calculate this steady state solution usinga fault zone viscosity of �m=100 and an activation energy of Ea = 100 kJ mol�1. Thelatter value is smaller than is generally found for olivine in laboratory experiments,but Christensen [1984a] shows that the e�ects of stress-dependent viscosity can beapproximated in calculations with Newtonian viscosity by decreasing Ea. In any case,this steady state solution is used only as a starting point for the models describedbelow in which we allow �f and Ea to vary.It is potentially di�cult to force strong lithosphere into or away from the cornersof the �nite element grid. To prevent this di�culty, we apply temperature boundaryconditions to prevent high-viscosity material from nearing the corners (Figure 4.1,inset). When the slab descends deeper than 800 km depth, its temperature is set to142



Tm, thus eliminating its strength and thermal buoyancy below this depth. Similarly,as the plate pulls away from the mantle upwelling opposite the descending slab, mantleviscosities are imposed for the �rst 200 km of the plate. Buoyancy, however, is stillcontrolled by the temperature distribution, which is set to mimic that of a ridge byusing (4:10) and allowing tc to increase linearly from zero to its full value at 200 km.In this way, we more realistically generate the small pushing force derived from thehorizontal juxtaposition of buoyant mantle and dense lithosphere, while still allowingthe slab to easily pull away from the edge of the grid.The importance of the slab and fault zone should depend on their rheology. Tosee how they do, we vary the strength of the fault zone by changing its viscosity �fand the e�ective viscosity of the lithosphere by changing the activation energy, Ea,associated with temperature dependence in (4:16). The steady state buoyancy �eldis used to drive 
ow for one time step to test the system's response to each newrheology. We record the plate velocity and the total viscous dissipation the mantle,lithosphere, fault zone, and overriding wedge. The lithosphere is distinguished fromthe mantle by temperature; elements with average temperatures < 0:9�T + Ts areconsidered lithosphere.4.4 NondimensionalizationThe activation energy Ea determines how viscosity varies with depth in the litho-sphere. To determine how the geometry and rheology of the subduction zone a�ectits importance to the convecting system, it is useful to estimate an e�ective viscosityof the entire lithosphere for a given activation energy. To do this, we use an averag-ing method suggested by Parmentier et al. [1976] in which viscosity is weighted bythe square of the second invariant of the strain rate tensor _� and then averaged overvolume: �� = RV � _�2dVRV _�2dV (4.17)We have performed experiments with both Newtonian and strain-rate-dependent rhe-ology and have found that our results, when expressed in terms of this de�nition of143



e�ective viscosity, are independent of the type of rheology applied. As a result, we cande�ne an e�ective viscosity that is the result of either Newtonian or non-Newtonianrheology in a bending lithosphere. In addition, it should be possible to account forbrittle behavior by applying a highly non-Newtonian (plastic) rheology, which ap-proximates the e�ects of a yield stress.We nondimensionalize the lithosphere and fault zone viscosities by the mantleviscosity: �0l = ��l��m �0f = ��f��m (4.18)where overbars indicate e�ective viscosities calculated using (4:17) and primes indicatedimensionless quantities. We note that a typical velocity is given by vp0 = 2_�0hs =�0hs=��m, where _�0 is a typical strain rate and �0 is a typical stress. Using �0 =�g��T ls, we nondimensionalize velocity asv0p = vp(�g��Thsls=�m) (4.19)Because dissipation in the fault zone is related to both its length lf and the shearstress it supports, �f , it is useful to express the fault zone strength as the product ofthese quantities, made dimensionless using �0 and hs:(�f lf)0 = �f lf�g��Thsls (4.20)Combining (4:15), (4:18), (4:19), and (4:20), we �nd(�f lf)0 = �0fv0plf=wf (4.21)To calculate (�f lf )0, we areally average the shear stress in the fault zone elements,multiply by lf , and nondimensionalize this quantity using (4:20). The result is gen-erally larger than values predicted using (4:21) by roughly 20%. Runs in which thesubducting plate is signi�cantly slowed by the lithosphere's strength yield fault zonestresses that are even larger, probably because the stress is less accurately represented144



by the shearing given by (4:15) if vp is small. In any case, the fact that (4:20) and(4:21) agree as well as they do over orders of magnitude change in both fault zoneand lithosphere viscosity indicates that we can accurately represent a fault zone in aviscous way.4.5 Finite Element ResultsWe have run the �nite element code for a range of lithosphere and fault zone strengthsfor plate thicknesses of 57, 100, and 157 km. As a result, we are able to determinehow the dimensionless plate velocity varies with �0l, (�f lf)0, and hs (Figures 4.2a, 4.3a,and 4.4a). In the nondimensionalization we assume an e�ective slab length of ls =700 km, which ignores any contribution from the upper 100 km of the �nite elementgrid. This is reasonable because the driving buoyancy of the slab is determined byhorizontal variations in density, which are small near the surface due to the slab'snearly horizontal orientation there (Figure 4.1).An isoviscous convecting system with an aspect ratio of A = L=D = 1500=1200 =1:25 should produce a dimensionless velocity of v0p = 0:06, as shown by a comparisonof (4:13) and (4:19) if Cm = 2, as we estimate later. The �nite element results showthat v0p is less than this value for all lithosphere and fault zone viscosities shown butis close to this isoviscous limit for a weak, thin, lithosphere and a weak fault zone(Figure 4.2a). Thus a strong lithosphere or fault zone signi�cantly slows a plate.Thick plates are slowed more than thin plates for a given lithosphere viscosity andfault strength (compare Figures 4.2a, 4.2b, and 4.2c), especially for plates with highlithospheric viscosity.To show that it is indeed the bending of the slab and the shearing of the fault zonethat act in slowing the plate, we plot the percentage of the total viscous dissipationthat occurs in each of the mantle (Figures 4.2b, 4.3b, and 4.4b), lithosphere (Fig-ures 4.2c, 4.3c, and 4.4c), and fault zone (Figures 2d, 4.3d, and 4.4d) as a functionof dimensionless lithosphere viscosity and fault strength for each of the three platethicknesses studied. The fraction of the viscous dissipation that occurs in the wedge145
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4.6 Theoretical Prediction of Plate VelocityThe �nite element results show that the plate velocity decreases signi�cantly fromits expected isoviscous value when a strong lithosphere or fault zone are present.Because the expression for the plate velocity (4:13) arises from a balance betweenviscous dissipation and potential energy release, it is clear that the expression forthis balance becomes incorrect as we increase the strength of the lithosphere or faultzone. The expression for potential energy release (4:12) should not be altered bythis change, but the expression for viscous dissipation should include the dissipationthat occurs in the fault zone and the lithosphere. We attempt to combine the viscousdissipation in these regions with that of the mantle in (4:8) to obtain an expression forvelocity similar to (4:13). To do this, we �rst characterize fault zone and lithospheredissipation.4.6.1 Fault Zone DissipationThe pattern of viscous dissipation in the fault zone is shown by Figure 4.5 for a strongfault zone with an intermediate lithosphere viscosity. It is clear that the largest rateof viscous dissipation is found within the elements of the fault zone and is typicallybetween 50 and 100 times the mean value for the entire �nite element grid. For a platevelocity of vp = 10 cm yr�1 and the mantle parameters given later, we estimate, using(4:12), an average potential energy release of 1:7� 10�8 W m�3 for a convecting cell.Assuming a speci�c heat of Cp = 1100 J kg�1 K�1, the concentration of this heatingby a factor of 100 within the fault zone should cause temperatures there to increaseby 75�C in the 5 Myr it takes for a subducting material to pass through 500 kmof subduction zone. This heating may weaken the fault somewhat but should beprimarily carried away by thermal di�usion into the adjacent cold slab.We have shown that the decrease in velocity from vp to zero across the fault zoneof width wf and area lfwf generates a shear stress �f given by (4:15). If �f is nearlyuniform along the fault's length, the dissipation in the fault zone �vdf can be expressed149
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using (4:7): �vdf = �fvplf (4.22)Neither the width of the fault zone wf nor its viscosity, �f , are used in this estimationof dissipation. Faults in real subduction zones are not viscous but may exhibit brittleor plastic rheology and thus should support some degree of shear stress over somelength, so we can still estimate their contribution to the total viscous dissipation using(4:22).4.6.2 Lithosphere DissipationThe lithosphere exhibits a more complicated pattern of dissipation than does the faultzone, as is shown in Figure 4.6 for a strong lithosphere and a weak fault zone. Thereappear to be four primary regions of contribution to the total dissipation. As the slabbegins to subduct, one region near the top of the slab exhibits extensional stressesalong its length, while another region below it is under horizontal compression. Thispattern is reversed as the slab exits the curved part of the subducting slab. Thesestresses are similar to �ber stresses in a bending elastic plate, as described by Turcotteand Schubert [1982, pp. 112-115]. As the slab begins to descend, it must deforminto a bent shape, which forces the surface of the slab to expand while its basecontracts. As the slab continues to descend, it must unbend from a curved shape intoa straight one. The recovery of this straightened shape requires undoing the inelasticdeformation that originally bent the slab. Thus the top surface of the slab contractswhile the bottom surface expands. This stress pattern matches the one observed inFigure 4.6 and generates an ampli�cation of viscous heating by up to a factor of 100(Figure 4.6). If we assume that the average heating of slab material as it travelsthrough the subduction zone is half of this, we expect the slab to only warm by 35�C,which should not signi�cantly a�ect its material strength.We estimate the dissipation associated with the observed stress pattern by analyz-ing the bending and unbending deformation. It can be shown using similar triangles[Turcotte and Schubert, 1982, pp. 114-115] that the horizontal strain �xx associated151
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However, lc is proportional to R, so we can approximate the strain rate as_�xx � vpR yR (4.24)Combining (4:7) and (4:24), the viscous dissipation in the lithosphere, �vdl , is�vdl � lc�l Z hs=2�hs=2 �vpR yR�2 dy (4.25)Performing this integral and using the fact that lc is proportional to R, we �nd�vdl = Clv2p�l  hsR !3 (4.26)where we have introduced the constant Cl in which we incorporate all constants ofproportionality and integration that arise in the derivation. Thus we �nd that thelithospheric dissipation depends on the cube of the ratio of the thickness of the slabto its radius of curvature.4.6.3 Expression for Plate VelocityThe sum of the dissipation rates for each of the mantle, fault zone, and lithosphereyields the total dissipation in the convecting system, which should equal its rate ofpotential energy release, as shown by (4:2). Thus�pe = �vdm + �vdf + �vdl (4.27)Combining (4:8), (4:12), (4:22), and (4:26) and solving for the plate velocity, we �ndvp = Cs�g��T lshs � Cf�f lf3�m (A+ Cm) + Cl�l (hs=R)3 (4.28)where we assign Cs = 1=p� and introduce the constant Cf , which should be closeto unity, to account for possible inconsistencies between the theory used to derive(4:28) and the �nite element results. If we apply the nondimensionalizations we have153



previously developed in (4:18), (4:19), and (4:20) to (4:28), we �ndv0p = Cs �Cf (�f lf)03 (A+ Cm) + Cl�0l (hs=R)3 (4.29)We compare the dimensionless velocity observed in the �nite element results (Fig-ures 4.2a, 4.3a, and 4.4a) to the velocities predicted by (4:29) in Figure 4.7. Thiscomparison requires us to estimate the constants Cm, Cl, and Cf . To do this, welook �rst at the velocity curve for hs = 157 km, log �0l > 2, and (�f lf)0 = 0:005 (Fig-ure 4.7a). In this region, lithosphere dissipation largely determines the velocity, asseen in (4:29) where the second term in the denominator dominates. We �nd thatCl = 2:5 gives a good match for this portion of the line when Cm and Cf are unity.We next determine Cm by approximately matching this same curve near log �0l = 0:5,where the mantle dissipation is most important, and �nd that Cm = 2:5 gives agood match. Finally, we determine Cf by matching the curves for (�f lf)0 = 0:3(Figure 4.7d) where the fault zone is most important, �nding Cf = 1:2.The results shown in Figure 4.7 show that both the hs = 100 km and hs =157 km curves are well matched between the �nite element results and theory. Thismatch is impressive given that it occurs over orders of magnitude variations in thedimensionless lithosphere viscosity and fault zone strength, where the importance ofeach ranges from negligible to governing. The third set of curves, hs = 57 km, shows�nite element velocities that are consistently larger than predicted, but the matchis not unreasonable, and the predictive power of (4:29) does not appear signi�cantlydiminished. One explanation for the discrepancy could be that the thinner slabhas a longer e�ective slab length ls because more of the curved part of the slabcan participate in pulling the slab downward. The result of increasing ls is mosteasily seen by �rst redimensionalizing both the observed and predicted curves usingthe previous value of ls that we used to nondimensionalize them. This yields thedimensional values of the observed plate velocity, to be matched by (4:28). Using alarger value of ls in (4:28) increases the predicted value of vp by increasing the drivingbuoyancy of the plate. Thus assuming a larger value of ls for the hs = 57 km curves154
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should bring their observed and predicted velocities closer together. This e�ect willbe more pronounced for a strong fault zone because the numerator of (4:28) is smallerso a constant increase in the driving buoyancy should cause a proportionally largerincrease in velocity. This could explain the larger discrepancy for the thin plate inFigure 4.7d.Theory predicts that Cf should be unity, but it is larger by 20%. One explanationfor this discrepancy could be that (4:22) underestimates fault zone dissipation by 20%,requiring a corresponding increase in Cf to yield the correct dissipation. Anotherpossibility is again a change in the length of the slab, ls. Decreasing the slab lengthby, say, a factor of 1.2 would cause a decrease in the �rst term in the numeratorof (4:28). To prevent a decrease in plate velocity, we could decrease Cf and Clby the same factor and Cm by a di�erent factor that depends on A. This wouldapproximately yield Cf = 1, as predicted by theory, and Cm = Cl = 2. This group ofconstants, combined with the new shorter slab length, causes the lines in Figure 4.7to match as well as they currently do, only at larger dimensionless velocities becausethey are nondimensionalized with the shorter slab length (4:19). This seems a likelyexplanation because it involves changing the e�ective length of the slab, a quantitythat is di�cult to estimate and may also be responsible for the discrepancies seen forthinner plates. Thus we proceed using Cf = 1 and Cm = Cl = 2.4.7 Comparison to Observed Plate VelocitiesPlates that are attached to subducting slabs move faster than those that are not[e.g., Forsyth and Uyeda, 1975; Gripp and Gordon, 1990]. The di�erence is striking;plates with an attached slab move with velocities between 6 and 9 cm yr�1 whilethose without generally move slower than 2 cm yr�1 when velocities are measuredrelative to the hotspot reference frame [e.g., Forsyth and Uyeda, 1975; Gordon andJurdy, 1986]. The more rapid motion of slab-bearing plates is thought to indicatethat the pull of slabs plays a dominant role in propelling the plates [e.g., Gripp andGordon, 1990]. 156



Earth's slab-bearing plates exhibit a wide range of horizontal length scales, asshown in Table 4.1, where two estimates of the plate length L are given. If a platemoves with constant velocity and does not change in size, the plate length is givenby L = Asvp, where As is the age of the plate as it begins to subduct. BecauseAs varies along the horizontal length of the subduction zone, the ages presented inTable 4.1 are averages determined by taking the length-weighted average of slab agesgiven by Jarrard [1986]. For the Paci�c plate, three separate subducting regions aregiven, as well as their average. Another approximation to the horizontal length scaleof the plate is the square root of the area of the plate. It is apparent from Table 4.1that both approximations for L are about the same for each plate and that Earth'splates exhibit about an order of magnitude variation in plate length, from 1500 kmfor the Cocos plate to 10,000 km for the Paci�c plate. The velocities associated withthese plates, however, are not correlated to these length scales (Table 4.1). All slab-bearing plates, with the exception of the small Juan de Fuca plate, move with absolutevelocities between 6 and 9 cm yr�1. This consistency of plate velocities is supportedby the past history of plate motions. Gordon and Jurdy [1986] show that nearlyall oceanic plates have moved with velocities between 5 and 9 cm yr�1 throughoutthe Cenozoic. Some exceptions include the Kula, Farallon, and Indian plates, whichachieved velocities of 11 to 14 cm yr�1 in the early Cenozoic, and the slow Juan deFuca plate today.The lack of a relationship between plate velocity and length is somewhat surpris-ing, because if the resistive forces of plate tectonics depend on the shearing of theunderlying mantle, smaller plates should move more rapidly than larger ones [e.g.,Morgan, 1971]. Thus, if the velocity is given by (4:13), we expect longer plates tobe slowed. This, of course, assumes that the driving force of each plate is the same.We do not expect this to be true, because longer plates should have thicker slabs,which will drive them faster. The equilibrium relationship between velocity and platelength is given by (4:14), which has a 
atter dependence on L than does (4:13). Thiscould help explain the lack of variation of vp among oceanic plates, but vp in (4:14)still depends on L. 157



Table 4.1. Subducting Plate DataPlate Velocitya, cm/yr Subducting Ageb, Ma Plate Length, kmvp As L = Asvp, L = pPlate AreaaCocos 8.6 17 1500 1700Indian 6.1 105 6400 7700Juan de Fucab 3.4 8 300Nazca 7.6 51 3900 3900Paci�cTotal 8.0 104 8300 10400South 8.0 94 8000 10400Japan 8.0 128 10240 10400Alaska 8.0 47 3800 10400Philippine 6.4 37 2400 2300aFrom Forsyth and Uyeda [1975].bFrom Jarrard [1986].By including the energy dissipation of the fault zone and lithosphere in the totalenergy balance of the convecting cell, a new variation of vp with L should result.It is possible that by adjusting the strengths of the lithosphere and fault zone, wecan �nd a new distribution of plate velocities that is consistent with the observationthat vp does not depend on L. To determine the range of lithosphere and fault zonestrengths in which this occurs, we �rst express the plate velocity vp as a function ofplate thickness hs using a variation of (4:28) and (4:29):vp = �g��T lsh0�m hs=(h0p�)� (�f lf )03 (A+ 2) + 2�0l (hs=R)3 (4.30)where we have changed the nondimensionalization of fault zone strength by replacing158



hs by h0 in (4:20). This is done so that the dimensional value of the fault zone strengthdoes not change with the plate thickness. We let h0 have a constant value of 100 km,but this value has no physical meaning, since the dimensional fault strength is notdependent on it. We also assume � = 10�6 m2 s�1, � = 3300 kg m�3, g = 10 m s�2,� = 3 � 10�5 K�1, �T = 1200�C, ls = 1000 km, and D = 2500 km. The radius ofcurvature of the descending slab, R, is taken to be 200 km, after estimates by Bevis[1986] and Isacks and Barazangi [1977]. Below, we determine how plate velocityvp varies with plate length L for various choices of the fault zone and lithospherestrengths (�f lf)0 and �0l. Because value of the the mantle viscosity �m is not wellconstrained, we use it as a free parameter that we can adjust to match the magnitudeof plate velocities to those found on Earth.The thickness of a plate as it begins to subduct depends on its age and henceon its length and velocity as in (4:11). This relationship between plate velocity andthickness is shown by solid lines in Figure 4.8 for plate lengths that correspond tothose of the Cocos and Paci�c plates (L = 1500 and 10; 000 km). These curves aremembers of a larger family of curves that satisfy the thickness-age relationship of(4:11) for each value of L. To determine the velocity of plates of a given length, weapply (4:30). Curves for this expression are also plotted in Figure 4.8 for four modelsof �0l and (�f lf)0 and for the two values of L. The intersections of these two sets ofcurves are denoted by circles in Figure 4.8 and give the velocity and thickness of aplate for each of the four models and for the two plate lengths L. For each modelof subduction zone strength we have chosen �m in (4:30) such that the Cocos platecurves (L = 1500 km, thin lines) intersect to give the actual Cocos plate velocity of8:6 cm yr�1. We then calculate, for each model, the velocity and thickness solutionsfor the Paci�c plate (L = 10; 000 km, thick lines) using the same viscosity we usedfor the Cocos plate. We can evaluate each model of subduction zone strength by itsability to predict the Paci�c plate velocity (8 cm yr�1).For a strong lithosphere, solutions only exist for the Paci�c plate in the limit thatthe lithosphere grows very thick and velocities approach zero (observe that the thickcurved solid line never crosses the dotted and dashed lines in Figure 4.8b). In fact,159
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if �0l is large, both (4:30) and (4:11) have velocities that vary as 1=h2s for large hs,meaning that solutions only exist for vp = 0. To obtain nonzero plate velocities andstill allow strong plates, we must place a limit on the thickness of the lithosphere.This is perhaps not unrealistic because at some point a growing boundary layer mustbecome unstable and cease to thicken [e.g., Howard, 1964; Jaupart and Parsons, 1985].We thus disallow thickening beyond an age of 80 Ma, the point at which the linearrelationship between sea
oor depth and the square root of its age is observed to breakdown [e.g., Parsons and Sclater, 1977]. There is some controversy over whether thisobservation is real and over the physical mechanism by which it occurs if it is, but wewill assume that this breakdown is accompanied by a corresponding cessation of platethickening at 100 km, the thickness given by (4:11) for 80 Ma. Thus, if solutions to(4:11) and (4:30) require plate thickness > 100 km, we allow solutions for both thethick plate and for hs = 100 km in Figure 4.8.The four models of lithosphere and fault strength produce di�erent variations ofvelocity with plate thickness, as shown by the dashed and dotted curves in Figure 4.8.If the fault zone is weak (dotted lines), the velocity variation with hs depends on thetwo denominator terms of (4:30). For small hs the bending term is small, so theconstant mantle term dominates, causing (4:30) to increase approximately linearlywith hs as the buoyancy increases. As hs increases, the lithosphere term begins todominate, and the curve for (4:30) bends over and decreases as 1=h2s for large hs.The thickness at which the lithosphere term begins to become important dependson the dimensionless lithosphere viscosity �0l. The e�ect of increasing the fault zonestrength is to decrease the numerator of (4:30), causing zero velocity at a nonzerothickness and approximately shifting the curves for (4:30) to the right. As a result, thePaci�c plate curves intersect the thickness-age relationship at di�erent velocities fordi�erent combinations of fault zone and lithosphere strength (thick lines, Figure 4.8).Only two of the four models produce realistic plate velocities for both the Cocosand Paci�c plates. If the lithosphere is weak (Figure 4.8a), the fault zone must alsobe weak (dotted line) or Paci�c plate velocities are too large. If the lithosphere isstrong (Figure 4.8b), nonzero plate velocities are only obtained if the maximum plate161



thickness of hs = 100 km is enforced. In this case, realistic velocities of � 8 cm yr�1are only obtained for the Paci�c plate if the fault zone is also strong (dashed line).The parameter space of dimensionless lithosphere and fault zone strength is morefully explored in Figure 4.9, where solutions for plate velocity are plotted as a functionof plate length L. For each subduction model of lithosphere and fault zone strength,two solutions are given: one for which a maximum thickness of 100 km is enforcedand one for which hs > 100 km is permitted. As before, the one remaining freeparameter, the mantle viscosity �m, is adjusted for each model so that plates of lengthL = 1500 km have velocities equal to 8:6 cm yr�1, the set of values appropriate forthe Cocos plate. We can now test a given model's validity by seeing if it gives realisticplate velocities for all values of L between the Cocos and Paci�c plate lengths. Itis clear that for all but the weakest lithosphere strengths, we must restrict the platethickness to 100 km in order to get reasonable plate velocities at large L. For weakfault zones of (�f lf)0 = 0:0 (Figure 4.9a), a dimensionless lithosphere viscosity near�0l = 60 yields a variation of velocity with L that is con�ned to the observed rangeof 5 to 9 cm yr�1. Greater values of �0l give velocities that are too small for large L,while smaller values yield velocities that are too large. As observed in Figure 4.8,larger fault zone strength requires greater dimensionless lithosphere viscosity. Forexample, if (�f lf)0 = 0:15 (Figure 4.9d), a lithosphere viscosity between about �0l = 200and �0l = 600 seems to produce a good range of plate velocities. Intermediate faultzone strengths require intermediate dimensionless lithosphere strengths, as shown inFigures 4.9b and 4.9c. Thus we can obtain a reasonable set of plate velocities forall fault strengths (�f lf)0 between 0.0 and 0.15 but only for speci�c values of thelithospheric strength �0l that increase with fault strength.The portion of the parameter space de�ned by the dimensionless lithosphere andfault zone strengths that yields Earth-like plate velocities for all plate lengths is high-lighted in Figure 4.10. This region is de�ned such that all plates of lengths between1500 and 10,000 km (representing the Cocos and Paci�c plates) have velocities be-tween 4 and 11 cm yr�1, a more liberal constraint than the one Earth places on therange of plate velocities. The band of models that produce acceptable plate velocities162
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runs through values of (�f lf)0 between 0.0 and about 0.2. As observed in Figure 4.9,strong fault zones for which (�f lf)0 > 0:15 require the lithosphere viscosity to be> 300 times that of the mantle to produce reasonable plate velocities. For weakerfault zones, lithosphere viscosities between 50 and 300 times �m are required.The fraction of the total viscous dissipation that occurs in each region of the platesystem is also shown in Figure 4.10, for plate lengths of 10,000 km (Paci�c plate) and1500 km (Cocos plate). For both the Paci�c and Cocos plates the viscous dissipationin the lithosphere remains approximately constant throughout the shaded region. Forthe Paci�c plate the lithosphere dissipates between 50 and 70% of the total potentialenergy (Figure 4.10c). This value is larger than the corresponding 15 to 30% forthe Cocos plate (Figure 4.10f) because the Paci�c plate bends into the mantle withthe maximum thickness of hs = 100 km, which generates more dissipation. For theCocos plate the decrease in lithosphere dissipation is accompanied by an increase indissipation in both the fault zone and the mantle.The correlation between the highlighted region of reasonable plate velocities andcontours of lithosphere importance (Figures 4.10c and 4.10f) is a consequence of thetwo sharing the same pattern in dimensionless lithosphere-fault zone strength space.The fact that they do has a consequence for the dimensional value of lithosphere vis-cosity predicted by our models. The percentage of lithosphere dissipation is given bythe ratio of (4:26) to (4:12). The result is proportional to vp, h2s, �l, and other parame-ters that are constant between models. Because the fraction of lithospheric dissipationis approximately constant in the region of reasonable velocities, the product of thesethree terms must be constant. We have de�ned vp to be constant, and for large L, hsis a constant 100 km. Thus �l should be constant among the acceptable models. Thisis shown in Figure 4.11b, in which the contours of dimensional lithosphere viscosityapproximately follow the shaded region of realistic velocities. From Figure 4.11b, weestimate an e�ective viscosity for between about 60 and 150 � 1021 Pa s. Thus, asfault zone strength increases, the required increase in the dimensionless lithosphereviscosity �0l is achieved through a decrease in mantle viscosity, not an increase inlithosphere viscosity. 164
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this variation by using a liberal range of plate velocities to constrain our realistic setof subduction models. Thus we continue by drawing conclusions using the resultsshown in Figures 4.10 and 4.11 as a guide.4.8 Application to the Earth's Subduction ZonesIndependent estimates of mantle viscosity could be used in conjunction with Fig-ure 4.11a to help constrain the strength of the lithosphere and fault zone. Estimatesof mantle viscosity, however, are currently uncertain to within an order of magnitude,the range expressed in Figure 4.11a. In addition, because mantle viscosity varies sig-ni�cantly with depth, it is unclear how a mantle viscosity pro�le should be averagedin order to compare it to Figure 4.11a. In e�ect, we have de�ned the mantle viscos-ity in (4:8) as the viscosity that is needed to allow (4:8) to yield the total viscousdissipation in the mantle, which does not necessarily correspond to independent es-timates derived from geoid or postglacial rebound studies. In addition, the viscosityestimates in Figure 4.11a are generated by assuming the e�ective length of the neg-atively buoyant portion of the slab to be ls = 1000 km. The value of this quantityis the subject of some controversy and may be diminished if the slab has di�cultypenetrating the phase change [e.g., Tackley, 1995] or jump in viscosity [e.g, Gurnisand Hager, 1988] at 670 km depth. Lithgow-Bertelloni and Richards [1995], on theother hand, estimate that slabs in the lower mantle contribute � 70% of the totalforce needed to drive the plates, suggesting that ls should extend deeply into the lowermantle. Our estimate of ls = 1000 km is intermediate between these two extremes,but if it is incorrect, the estimates of mantle and lithosphere viscosity (Figures 4.11aand 4.11b) should be changed in proportion to ls, as shown by (4:30).If the strengths of the lithosphere and the fault zones were well known, we coulduse Figure 4.10 to determine the relative importance of the mantle, lithosphere, andfault zone in dissipating convective energy. The e�ective lithosphere viscosity �lis particularly di�cult to constrain because it represents an attempt to relate thecomplicated rheological laws of non-Newtonian rheology and brittle failure to simple167



viscous 
ow. In addition, any errors in our estimate of the radius of curvature ofbending slabs, R, are mapped into �0l. As shown by (4:30), an increase in R can bebalanced by a corresponding increase in �0l by the cube of the change in R. Thus it isdi�cult to precisely estimate �l for Earth. Using R = 200 km, the range of acceptablelithosphere viscosities is between 60 and 150 � 1021 Pa s (Figure 4.11b). The mantleviscosity required is close to 1021 Pa s for weak fault zones and smaller for strongfault zones (Figure 4.11a). It is reasonable that signi�cant temperature-dependentstrengthening occurs in the lithosphere, so this range of lithosphere viscosities seemsplausible.To estimate the strength of the fault zone, we estimate its length and the shearstress it supports. An analysis of the seismicity under Japan [Hasegawa et al., 1994]reveals low-angle thrust events occurring along the upper surface of the plate. Ifthese earthquakes represent slip on the plate bounding fault, this fault appears tobe � 200 km long. The stress on such faults can be estimated in several ways.Earthquake stress drops on plate bounding faults are typically< 10 MPa [e.g., Hanks,1977; Kanamori and Anderson, 1975]. This provides a lower bound on the typicalfault stress, but if earthquakes do not relieve all of the stress on the fault, the actualstress could be larger. Hanks [1977] speculates that plate-bounding faults supportstresses of the order of 100 MPa down to � 15 km, at which point the strength ofrocks decreases due to an increase in temperature. Hickman [1991] suggests thatalthough faults should be capable of supporting such stresses, the lack of heat 
owanomalies associated with plate-bounding strike-slip faults indicates that the stress onthese faults must be downward of 20 MPa. Molnar and England [1990], on the otherhand, use heat 
ow estimates near major subduction zone thrust faults to estimatethat stresses on these faults must exceed 30 MPa. Finally, Zhong and Gurnis [1994]show that trench topography is best matched in dynamic models of subduction zonesif major thrust faults support shear stresses of 15 to 30 MPa to 100 km depth.Average fault stresses of 10 to 100 MPa supported over 200 km yield fault strengthsbetween 2000 and 20,000 MPa km, which, when made dimensionless using (4:20),yields (�f lf)0 between about 0.017 and 0.17. This range gives essentially no constraint168



on fault strength in Figures 4.10 and 4.11, but if we assume that faults are weak, weneed only consider dimensionless fault strengths less than about (�f lf )0 = 0:05. In thiscase, the dissipation in the fault zone must be < 10% of the total for thick (Paci�c)plates and < 20% for thin (Cocos) plates (Figures 4.10b and 4.10e). Because thelithosphere dissipation is consistently � 60% of the total for thick plates and 20%for thin plates (Figures 4.10c and 4.10f), the mantle component of dissipation is� 20� 40% for thick plates and 60 � 80% for thin plates (Figures 4.10a and 4.10d).4.9 DiscussionTo estimate the relative importance of the lithosphere, fault zone, and mantle inresisting convective motions, we use an energy balance between the rate of viscousdissipation and the rate of potential energy release. In doing so, we ignore the e�ectsof heating associated with viscous dissipation in both our �nite element calculationsand our analytic theory. This is consistent with our assuming an incompressible 
uidin (4:5), which eliminates the pressure work term. For a compressible 
uid, includingviscous dissipation mainly a�ects the details of the temperature �eld and hence thedetails of the distribution of internal buoyancy and potential energy release. Backus[1975] and Hewitt et al. [1975] show that for a compressible 
uid the net coolingassociated with the pressure term globally balances the temperature increase dueto viscous heating. Thus we do not expect an important change in the global rateof potential energy release. Viscous heating might have an important e�ect locallyin regions of concentrated dissipation such as fault zones and slabs because of thetemperature dependence of e�ective viscosity. For fault zones, we already use an insitu e�ective rheology. For the slab although the rate of dissipation can be high,the time a parcel of material spends in a region of high dissipation is short, so itstemperature increase is small.By balancing viscous dissipation and potential energy release, we have de�ned arange of lithosphere and fault zone strengths for which plates move at speeds withinthe range observed on Earth (5 � 9 cm yr�1). There are a few plates, however,169



that do not move with velocities within this range. For one, the small Juan deFuca plate is currently subducting at < 4 cm yr�1 (Table 4.1). In fact, our modelpredicts a slow velocity for short plates (Figure 4.9) because the negative buoyancyof their thin subducted slabs is small. Another exception is the slow subduction ofthe North American, South American, and Antarctic plates under the Caribbean,Scotia, and South American plates [Jarrard, 1986]. The horizontal extent of theseslabs represents only a small fraction of the perimeter of the plate to which they areattached [Forsyth and Uyeda, 1975], so we can not expect the pull of the subductedslab to be a signi�cant driving force for these plates.Plate velocities in the early Cenozoic (64-43 Ma) were slightly larger than thoseobserved today. An examination of individual plate motions shows that the increase inplate velocity is signi�cant for the Indian, Kula, and Farallon plates, which traveledclose to 14 cm yr�1 in the early Cenozoic [Gordon and Jurdy, 1986]. Plate recon-structions [Gordon and Jurdy, 1986; Lithgow-Bertelloni and Richards, 1998] showthat during this time period the Kula and Farallon plates were shrinking in size astheir ridges moved closer to their subduction zones. Our model assumes that theplate is in a steady state. In particular, we assume that the plate thickness asso-ciated with buoyancy is the same as that associated with bending, so that the twovalues of hs in the plate velocity equation (4:28) are the same. For a shrinking platethe slab is composed of material that subducted with an age older than that of thematerial that is currently subducting. Thus the thickness associated with buoyancyin the numerator of (4:28) should be larger than that associated with bending in thedenominator. As a result, a shrinking plate should travel with a faster velocity thana plate that is in steady state. It is possible that the Kula and Farallon plates werepropelled at faster rates during the early Cenozoic due to the fact that they wereshrinking during this time period. The Indian plate, however, does not appear tochange in size while its velocity is near 14 cm yr�1 [Gordon and Jurdy, 1986].Other mechanisms could be responsible for variations in plate velocities. First,transform faults could a�ect a plate's velocity by forcing it to travel in a directionparallel to the fault's strike and at an angle to the pull of the subduction zone [e.g.,170



Lithgow-Bertelloni and Richards, 1998; Zhong et al., 1998]. In addition, R or ls couldchange with time or between plates, yielding variations in vp, as shown in (4:28).Finally, complications to mantle convection induced by variations in viscosity andthe presence of phase changes could a�ect plate motions [e.g., Bunge et al., 1996;Hager and O'Connell, 1979; Tackley, 1995; Van der Hilst et al., 1997; Zhong andGurnis, 1995a].We have shown, however, that the mantle plays an important role only for shortplates and for long plates the lithosphere is dominant (Figure 4.10). Thus the mantledynamics may play a secondary role to subduction zone dynamics in controlling thepatterns and rates of mantle convection. This observation could have important im-plications for Earth's history and future. In an isoviscous Earth, plate velocities scalewith mantle viscosity [e.g., Turcotte and Oxburgh, 1967]. Thus a small decrease inmantle temperature should cause plate velocities to slow considerably because mantleviscosity is highly temperature dependent. The strength of subduction zones, how-ever, should primarily depend on Earth's surface temperature, which should remainfairly constant over most of Earth's history. If subduction zones indeed provide aprimary resistance to convection in the mantle, the independence of their strengthfrom changes in mantle temperature could cause plate velocities to be stabilized overgeologic time, despite lower mantle viscosity during warmer periods of Earth's his-tory. In the future, a cooling Earth should continue to convect in the current platetectonic regime until mantle viscosity increases to the point at which it produces moredissipation than the bending lithosphere. From (4:28), we see that this requires aboutan order of magnitude increase in �m unaccompanied by a similar change in �l. Thusone role of strong subduction zones could be to stabilize plate tectonic rates over longperiods of Earth's history.Another parameter that is important in controlling plate velocities is the maxi-mum thickness of the oceanic lithosphere, which we have taken here to be 100 km.If the lithosphere can grow thicker than this, the additional bending stresses, whichdepend on the cube of plate thickness, slow the plate considerably, causing the plateto cool and thicken even more. A Paci�c-sized plate with no thickness restrictions171



becomes frozen at zero plate velocity if its viscosity is �> 100 times that of the mantle(Figure 4.9). This could throw the Earth into the rigid lid convective regime describedby Jaupart and Parsons [1985] and Solomatov [1995]. It is interesting to speculatethat the process that limits oceanic plate thicknesses on Earth, if it exists, could bethe process that enables Earth to convect in a plate tectonic mode instead of a moreVenus-like rigid lid mode. This process is likely to be a�ected by the temperaturedi�erence between the mantle and lithosphere and the temperature-dependent prop-erties of the lithosphere, so it may depend on mantle temperature. If it does, a hottermantle in the past, or a cooler one in the future, could change the maximum thicknessof oceanic lithosphere and thus alter the plate tectonic style of Earth.4.10 ConclusionsWe have shown that the rheology of the lithosphere is crucially important in control-ling the dynamics of convection in the mantle. The strength of fault zones and thee�ective viscosity of the lithosphere, which is probably a�ected by both brittle fault-ing and non-Newtonian viscous 
ow, are important quantities that control Earth'sdistribution of plate velocities. Thus, as anticipated by Jaupart and Parsons [1985]and Solomatov [1995], it is the strength of the upper boundary layer to convectionin the mantle that determines the convective pattern of the mantle. We have foundthat for Earth it is how easily this upper boundary layer can bend and slide pastneighboring lithosphere as it subducts that determines the mantle's convective style.We have shown that at least 60% of the energy associated with the descent ofa subducting slab attached to a long, thick plate is dissipated by the bending ofthe slab, and up to 10% more may be dissipated in the fault zone adjacent to theslab. For shorter, thinner plates, the bending contribution decreases. Because thesubduction zone itself is so crucially important in determining the dynamics of platetectonics and mantle convection on Earth, it is essential that subduction zones behandled carefully in numerical models of mantle convection. It is not clear that theimplementation of convergent plate boundaries using piecewise continuous kinematic172



boundary conditions, low-viscosity boundaries, or even a faulted lithosphere can ac-curately reproduce the extreme importance of the bending lithosphere in a numericalmodel. One solution may be to apply a complicated, high-resolution gridding scheme,like the one used here in a local study, to a global mantle 
ow calculation. This wouldrequire intense gridding and computational e�ort. Alternatively, a more sophisticatedparameterization of subduction zones must be developed that mimics the dissipationpatterns of bending and fault zone shear that occur in real subduction zones.Acknowledgments. This work was supported in part by National Science Foundationgrant 9506427-EAR, NASA grant NAG5-6352, and by a National Science Foundation Grad-uate Research Fellowship. We thank M. Gurnis, P. Molnar, R. O'Connell, and S. Zhong fordiscussions and comments that improved the manuscript, and M. Riedel and B. Schott forhelpful reviews.
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