Chapter 4

Effects of Plate Bending and Fault
Strength at Subduction Zones on

Plate Dynamics

Published in Journal of Geophysical Research by C. P. Conrad and B. H. Hager, 104,
17551-17571, 1999. Copyright by the American Geophysical Union.

Abstract. For subduction to occur, plates must bend and slide past overriding plates
along fault zones. Because the lithosphere is strong, significant energy is required for
this deformation to occur, energy that could otherwise be spent deforming the man-
tle. We have developed a finite element representation of a subduction zone in which
we parameterize the bending plate and the fault zone using a viscous rheology. By
increasing the effective viscosity of either the plate or the fault zone, we can increase
the rates of energy dissipation within these regions and thus decrease the velocity of
a plate driven by a given slab buoyancy. We have developed a simple physical theory
that predicts this slowing by estimating a convecting cell’s total energy balance while
taking into account the energy required by inelastic deformation of the bending slab
and shearing of the fault zone. The energy required to bend the slab is proportional
to the slab’s viscosity and to the cube of the ratio of its thickness to its radius of
curvature. The distribution of dissipation among the mantle, lithosphere, and fault

zone causes the speed of a plate to depend on its horizontal length scale. Using the
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observation that Earth’s plate velocities are not correlated to plate size, we can con-
strain the lithosphere viscosity to be between 50 and 200 times the mantle viscosity,
with higher values required if the fault zone can support shear tractions 2 50 MPa
over 300 km. These subduction zone strengths imply that the mantle, fault zone,
and lithosphere dissipate about 30%, 10%, and 60% of a descending slab’s poten-
tial energy release if the slab is 100 km thick. The lithospheric component is highly
dependent on slab thickness; it is smaller for thin plates but may be large enough
to prevent bending in slabs that can grow thicker than 100 km. Subduction zone
strength should be more stable than mantle viscosity to changes in mantle temper-
ature, so the controlling influence of subduction zones could serve to stabilize plate
velocities over time as the Earth cools. Because the “details” of convergent plate
boundaries are so important to the dynamics of plate motion, numerical models of

mantle flow should treat subduction zones in a realistic way.

4.1 Introduction

The tectonic motions of Earth’s plates are thought to represent the upper boundary
layer of convection in the mantle. This boundary layer founders in a few localized
downwellings known as subduction zones in which one plate dives beneath another
into the mantle’s interior. It is thought that the negative buoyancy associated with
cold, dense slabs drives plate motions by pulling on the surface plates to which these
slabs are attached [e.g., Chapple and Tullis, 1977; Forsyth and Uyeda, 1975; Hager
and O’Connell, 1981; Lithgow-Bertelloni and Richards, 1995]. The cold temperatures
of the boundary layer make it not only denser but stiffer than the mantle, a fact
that has important implications for convection in the mantle. For example, several
authors [e.g., Bunge and Richards, 1996; Davies, 1988; Gurnis and Zhong, 1991] have
noted that the long-wavelength structure of mantle flow is at least partly controlled
by the existence of strong surface plates.

Convection of a fluid with a strong upper boundary layer has been studied by

several authors. In fluids with temperature-dependent viscosity, Jaupart and Parsons
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[1985] found that two length scales of instability are possible. For large viscosity
contrasts between the boundary layer and the underlying fluid, deformation of the
entire upper boundary layer becomes sufficiently difficult that it cannot participate
in convection. In this case, short-wavelength instabilities develop below a “rigid lid.”
For intermediate viscosity contrasts the upper boundary layer can participate in the
convective circulation, but its strength produces wavelengths that are longer than
would be expected for an isoviscous fluid. Solomatov [1995] describes this convective
regime as a transitional one between the isoviscous and the rigid lid regimes, dis-
tinguished by the significant resistance to flow offered by the cold boundary layer.
This resistance can rival that due to shearing of the interior, meaning that the strong
upper boundary layer is important in determining convective behavior.

Because the boundary layer is so important, the details of how it deforms should be
important as well. In standard isoviscous boundary layer theory, first used to describe
mantle convection by Turcotte and Ozburgh [1967], downwellings are symmetrical and
result in horizontal shortening of the material at the surface above them. Thus, some
material at the surface stagnates above the descending plume while cold material from
either side flows beneath it. The downwellings associated with plate-scale convection
in the mantle do not behave in this manner. Instead, in a subduction zone, one
plate bends and descends into the mantle beneath another, even if both plates are
composed of oceanic lithosphere. This one-sided downwelling allows more of the
thermal buoyancy of the boundary layer to participate in driving plate motions than
is achieved in the rigid lid or isoviscous styles of convection. It is not clear, however,
if this increased buoyancy is offset by the increased resistance to deformation imposed
by the subducting plate’s strength.

There is evidence that resistance to convection is created by the subduction zone.
First, the seismicity of Wadati-Benioff zones illuminates the location of the slab [e.g.,
Isacks and Barazangi, 1977; Giardini and Woodhouse, 1984]. The fact that energy is
released by earthquakes within the slab indicates that the descending lithosphere must
generate at least some resistance to mantle convection. In addition, the focal mecha-

nisms associated with this seismicity seem, in some cases, to indicate a stress pattern
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in the slab characteristic of bending as the slab begins to descend, and unbending as
it straightens out and continues into the mantle [e.g., Bevis, 1986; Hasegawa et al.,
1994; Kawakatsu, 1986]. The dissipation of energy within the slab as it both bends
and unbends indicates that at least some of the bending deformation is inelastic and
is undone by more inelastic deformation in an unbending process [e.g., Chapple and
Forsyth, 1979].

The presence of inelastic deformation in the slab is indicative of the type of rhe-
ology that controls the slab’s behavior. The topography and gravity of trenches
associated with subduction can be explained by theoretical models of the bending of
an elastic plate ~ 30 km thick [e.g., Hanks, 1971; Watts and Talwani, 1974]. If the
radius of curvature of a bending plate is R = 200 km [e.g., Bevis, 1986], its Young’s
modulus is £ = 70 GPa [e.g., Turcotte and Schubert, 1982, p. 106], and its Poisson’s
ratio is v = 0.25, we estimate, following Turcotte and Schubert [1982, p. 114], that
the maximum bending stresses in the plate must be of order 6000 MPa. This figure
is about an order of magnitude larger than the maximum strength of oceanic litho-
sphere [e.g., Kohlstedt et al., 1995], so at most only 10% of elastic bending stresses
can be supported. The remaining stress must be relaxed by an inelastic deformation
mechanism. For an elastic-plastic or elastic-brittle rheology, elastic stresses greater
than the maximum yield stress are relieved by fracturing of the rock [e.g., Turcotte
and Schubert, 1982, pp. 341-345]. This type of rheology can produce the seismicity
distributions of the Benioff zones, which are, perhaps coincidentally, also ~ 30 km
wide [e.g., Hasegawa et al., 1994; Jarrard, 1986; Kawakatsu, 1986]. In a viscoelastic
rheology, viscous strains relax large elastic stresses [e.g., Turcotte and Schubert, 1982,
pp- 337-340]. We expect the lithosphere to exhibit some viscous properties because
it is partly composed of cold mantle material, and the mantle certainly behaves as a
highly temperature-dependent viscous fluid. In fact, some authors have shown that
trench topography can be explained by the loading of a viscous plate [e.g., De Bre-
maecker, 1977], by viscous stresses associated with bending [e.g., Melosh and Raefsky,
1980], or by viscous coupling of the surface to the negative buoyancy of the slab [e.g.,
Sleep, 1975; Zhong and Gurnis, 1994].
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The oceanic lithosphere probably experiences all of the above mentioned defor-
mation mechanisms at various stages during subduction, making a full description of
the applicable constitutive relation extraordinarily complicated. We recognize, how-
ever, that all of the deformation mechanisms, with the exception of elastic bending,
dissipate energy and thus retard the flow of the lithosphere into the mantle. In what
follows, we estimate the energy dissipated by a deforming slab assuming viscous flow
and compare it to the energy dissipated by flow in the underlying mantle. In doing
so, we are able to determine how plate velocities depend on the material strength of
the subducting lithosphere, which we express as the lithosphere’s “effective” viscosity.
Because we are simply performing an energy balance, this parameter can be thought
of as allowing viscous flow to dissipate the same energy that would be dissipated if
all of the complicated deformation mechanisms were included. Because the effective
lithosphere viscosity results from some combination of many deformation mechanisms
whose relative and absolute strengths are not known, we treat the effective viscosity
as a variable upon which plate velocity depends. Using FEarth’s observed distribution
of plate velocities, we hope to constrain the value of this parameter and, as a result,

the importance of subduction to the large-scale convective structure of Earth.

4.2 Viscous Dissipation

One way to determine the relative importance of the slab, fault zone, and mantle is
to compare the energy dissipated in deforming each of these regions. To do this, we
start with conservation of momentum for a continuous medium:

ou; ou; doi;

where f; is a body force, oy; is the stress, p is density, ¢ is time, and w; and z;
are the velocity and distance components. To obtain an expression for energy, we

multiply (4.1) by u; and integrate over a volume V. After some manipulation [e.g.,
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Chandrasekhar, 1961, pp. 12-14], we obtain

1 0 1
5/‘/pau?d\/—l— §/S,oufujd5j (4.2)

:/Sumjdsj /02]2 dV—|—/ fdV

where S is the surface of the volume V. These five terms express the energy balance
for viscous flow, and only the last two contribute significantly for the mantle. The
left-hand side gives the rate at which the fluid’s kinetic energy changes with time and
is negligible if the Reynolds number is low, as it is for the mantle. The first term on
the right-hand side is the rate at which stresses do work on the boundary of V. If V
is the volume of a closed convecting cell with free-slip boundary conditions, this term
is zero.

The middle term on the right-hand side of (4.2) represents the rate at which work
is done on the medium by the deformation. It is useful to decompose the total stress

o;; into its pressure p and deviatoric 7;; components:
0ij = —pbij + 7ij (4.3)
where §;; is the Kronecker delta function. Defining the strain rate

=5 (axj * 8:1:2') (4.4)

the rate of work integral can be written

Odu;
/ ti —dV = / —péi; + 7€) dV (4.5)

o;
g Ox;

The first term on the right-hand side of (4.5) represents the increase in internal energy
due to changes in volume, while the second term represents strain energy dissipated
by shearing of the material.

At this point, we make the simplifying assumptions that the material is incom-

pressible, ¢; = 0, and that its rheology can be expressed as that of a fluid, with an
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effective viscosity n that can be a function of position:
T = 2né;; (4.6)

Then the rate at which work is done on the material is
o+ = /anéijdv - z/vnéijéijdv (4.7)

where ®¥4 is the total rate of viscous dissipation.

For an isoviscous mantle the fluid deformation within a convecting cell is charac-
terized by a surface plate moving with velocity v, and a return flow governed by the
free-slip condition at the core-mantle boundary. The resulting viscous flow produces
shear stresses that can be determined by analogy to asthenospheric counterflow [e.g.,
Turcotte and Schubert, 1982, pp. 232-236]. The result is 7. = 3n,v,(D — 2)/D?,
where 17, is the mantle viscosity, D is the mantle thickness, and z is depth (positive
downward). For a cell of length L we use (4.7) to estimate ®¥9, the total rate of

viscous dissipation in the mantle
oVl = 3n,,02 (A+C,) (4.8)

where ¢4

v as for all subsequent expressions for dissipation, is per unit length per-

pendicular to the direction of flow. Here A is the aspect ratio of the convecting cell,
equal to the greater of L/D or D/L. In defining A, we recognize that for L < D
the dominant flow is similar to the one described above but in the vertical direction
and produced by the downgoing slab (also moving with speed v,) and the free-slip
boundary associated with the return upwelling. In addition, we recognize that to
conserve mass, a return circulation must occur near the two shorter edges of the cell.
The variable parameter C,, in (4.8) accounts for the additional energy dissipated by
this circulation and depends on how sharply streamlines of the flow are forced to
bend at corners. Simple numerical tests show that (4.8) accurately describes viscous

dissipation that occurs in a box with two boundaries that are free-slip and two that
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move with velocity v,. We also find that ), does not depend on the aspect ratio A.

The remaining term in (4.2) gives the rate at which body forces do work on the
fluid. We refer to this term as ®P° because, for the mantle, it represents the rate at
which gravitational potential energy is released. The net work done by gravity on
the hydrostatic component of the density field is zero for a closed convecting cell, so
only the horizontally varying component of the density field contributes to ®P¢. For

a Boussinesq fluid whose density varies with temperature, ®P° is given by
Ore = / pga [Ty, — T(x,z)]v.(x, z)dV (4.9)
v

where v, is the vertical component of velocity (positive downward), T is temperature,
T,, 1s the mantle interior temperature, « is the thermal expansivity, and ¢ is the
acceleration due to gravity. For slab driven flow, only the descending slab contributes
to (4.9). To perform this integral, we must integrate over the temperature profile of
the subducting slab, which changes as the slab descends and warms. The heat that
warms the slab is lost from the neighboring mantle, so the integral of the temperature
profile along horizontal planes should not vary with depth [e.g., Turcotte and Schubert,
1982, pp. 176-178]. Thus we can simply use the integral of the surface temperature
profile in estimating (4.9). This profile is that of a cooling boundary layer, generated
as the lithosphere travels across Earth’s surface, and can be represented as an error

function [e.g., Turcotte and Schubert, 1982, pp. 163-167]:
T(z)=AT erf(z/hs) + T (4.10)

where T is the temperature at the surface, AT = T,,—1T, is the temperature difference
between the mantle and the surface, and h is the thickness of subducting lithosphere,

defined here in terms of the time ¢. during which the boundary layer has cooled:

hs = 2v/kt. = 24/kL /v, (4.11)

where x is the thermal diffusivity. Then the total rate of potential energy release
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provided by the slab is, in two dimensions

B pgaNTv,lhg

N (4.12)

Or° = pgaATv, I, /Oo erfc (i) dz
0 hs

where [, is the length of the subducted portion of the slab and we have assumed that
the slab velocity is the same as the surface plate velocity v,.

The energy balance given by (4.2) is then simply a balance between viscous dis-
sipation and potential energy release, and can be simplified to ®'¢ = ®P¢. Equating

these terms using (4.8) and (4.12) yields an expression for the plate velocity:

B pgaAThgl
3V (A + Cur)

Up

(4.13)

Combining (4.13) and (4.11), setting [, = D and L > D, and solving for v, yields

AR INY? [ pga AT D Bor —2/3
=|— - — ' 4.14
K ( 9 ) ( M (D = ) (4.14)

This expression for velocity is a variation of a similar expression given by standard
boundary layer theory [Turcotte and Schubert, 1982, p. 282]. The differences arise in
our estimate of the viscous dissipation in (4.8), where we assume that the boundary
condition at the mantle’s base is free slip and that a slab’s velocity is equal to that of
its attached surface plate. For a more complicated system with a strong lithosphere
that subducts, the added viscous dissipation in the subduction zone should serve
to slow the plate by adding terms to the denominator of (4.13). To determine the
influence of the subduction zone, we have developed a finite element model of a

convecting system that specifically includes a subduction zone.

4.3 Finite Element Model

Various numerical parameterizations of a subduction zone have been used to study a
variety of problems. These are generally either local studies designed to investigate

the dynamics of the subduction zone itself [e.g., Gurnis and Hager, 1988; Houseman
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and Gubbins, 1997; Melosh and Raefsky, 1980; Toth and Gurnis, 1998; Zhang et al.,
1985; Zhong and Gurnis, 1994] or large-scale studies designed to look at the effect of
various parameterizations of subduction zones on mantle convection of a global scale
le.g., Bercovici, 1995; Bunge and Richards, 1996; Davies, 1989; Hager and O’Connell,
1981; King and Hager, 1994; King et al., 1992; Puster et al., 1995; Zhong and Gurnis,
1995a, b]. Due to computational constraints, the local studies generally have finer
spatial resolution than the global models and thus can more realistically incorporate
some of the more detailed structures of a subduction zone. In particular, Houseman
and Gubbins [1997], Melosh and Raefsky [1980], and Zhang et al., [1985] assign a
realistic curved geometry to an isolated subducting plate and look at the bending
of that plate as it descends. Zhong and Gurnis [1994] and Zhong et al. [1998] also
introduce a fault zone into an otherwise regular grid in an effort to parameterize the
interaction between subducting and overriding plates. Finally, Toth and Gurnis [1998]
allow a fault zone’s geometry to evolve in response to dynamical forces associated with
the initiation of subduction.

Detailed local models of subduction zones demand fine numerical resolution and
complex grid geometry, so it is difficult to incorporate these models into larger-scale
global models. To get around this problem, the detailed structure of the subduction
zone is generally parameterized in a simple way in an effort to mimic its effects on
mantle flow. Several methods have been used. One is to impose piecewise continuous
velocity boundary conditions at the surface to force plate-like behavior [e.g., Hager
and O’Connell, 1981; Davies, 1988; Bunge and Richards, 1996]. Another approach
is to implement plates by combining strongly temperature-dependent viscosity with
low-viscosity weak zones that represent plate boundaries [e.g., Davies, 1989; Gurnis
and Hager, 1988; King and Hager, 1990; Puster et al., 1995]. Both approaches, while
indeed allowing the plates to move in a plate-like fashion, do not take into account the
detailed structure of the subduction zone and its dynamics. A few studies include a
fault zone that can support shear stresses and allow differential displacements across
its width [e.g., Toth and Gurnis, 1998; Zhong and Gurnis, 1994, 1995a, b; Zhong

et al., 1998]. This fault zone parameterizes the interaction between the subducting
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and overriding plates and allows for more realistic subduction geometry, in that one
plate overrides another and the entire thermal buoyancy of the subducting plate is
incorporated into driving convection. These studies, however, do not specifically
treat the deformation within the lithosphere as it subducts. This deformation may
be important in resisting plate motions, so a more complete analysis of a subduction
zone’s effect on mantle flow is needed.

In this study we incorporate the important features of local subduction models
in a larger-scale convecting system. In particular, we include a smoothly bending
subducting slab and an adjacent fault zone in a viscous model of a single convection
cell. Both are modeled as viscous fluids in a finite element calculation using ConMan,
a finite element code that solves the coupled thermal diffusion and incompressible
Navier-Stokes equations for both Newtonian and non-Newtonian rheology [King et
al., 1990]. The finite element grid we used includes a lithosphere, mantle, and viscous
fault zone, as shown in Figure 4.1. Its length L is 1500 km, and its depth D is 1200
km.

An accurate representation of deformation in the subducting slab is facilitated
in the design of our finite element grid. The curved surface of the slab is parallel
to the direction of its descent into the mantle, allowing it to flow into the mantle
in a smooth, continuous fashion, as real slabs do in Earth. A rectangular grid of
comparable resolution, which could have been more easily implemented, would not
allow this type of slab behavior because the slab edges would consist of corners in the
grid, which would alter its flow. The surface of the slab is drawn so that the vertical
component of the slab velocity at each point increases as the error function of the arc
length around the slab, as described by Melosh and Raefsky [1980]. We use a slab
dip angle of 90° and a radius of curvature R of 240 km. This surface describes the
curved upper surface of the subducting slab. The rest of the grid, which represents
both the lithosphere and mantle, is filled in below this surface as shown in Figure 4.1
and is assigned a temperature-dependent mantle viscosity n,,. Free-slip is imposed
along all horizontal and vertical surfaces, and all corners are pinned.

The interaction between the subducting and overriding plates is parameterized
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Figure 4.1: The finite element grid used. Shown in expanded detail is the gridding
of the subduction zone. This region is highlighted on a schematic of the full finite
element grid (inset). The portion of the grid that is not detailed here has a regular
geometry and allows a return circulation to the subducting region. The shaded regions
represent, from lower left to upper right, the mantle, subducting lithosphere, fault
zone, and overriding arc-wedge region. The lithosphere is differentiated from the
mantle by temperature alone. Flow boundary conditions are free slip along all grid
edges. The large dots represent nodes that are pinned to zero velocity. Distances
shown are in kilometers.
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by a viscous fault zone one element wide, bounded above by an overriding arc-wedge
region whose lower boundary is pinned (Figure 4.1). We use a fault zone of length
[y = 782 km and width w; = 10.7 km and assign a temperature-independent viscosity
nys, which allows the fault to support shear stress. The shear strain rate across the
fault zone is given by é¢; = %vp/wf, so the shear stress within the fault zone 7 is
given by

. v
Ty = 2npep = nfw—’; (4.15)

The strength of a viscous fault zone, represented by the stress it can support, is thus
a function of both the imposed viscosity and the velocity of the subducting plate.
Real fault zones are not, of course, composed of viscous fluids but of rocks that can
support some degree of frictional shear stress. Our viscous fault zone supports shear
stresses between the subducting plate and the overriding wedge and thus models this
essential aspect of a real fault zone.

The overriding wedge region (Figure 4.1) is also a viscous fluid with a viscosity
100 times that of the mantle, but it does not participate in the main convective flow.
Instead, free-slip boundary conditions along the grid edges allow a small circulation
of material between the fault zone and the wedge. This circulation is minor and does
not affect the dynamics of the subducting plate system, as demonstrated below.

We assign an error function temperature profile to the oceanic lithosphere as given
by (4.10), using Ty = 273 K, AT = 1200°C, x = 1 mm? s™!, and a preimposed cooling
time t.. Initially, this temperature profile is imposed across the entire surface of the
grid. Velocity boundary conditions along the surface of the oceanic plate are used to
advect this temperature profile into the mantle, where thermal diffusion allows some
warming of the slab as it descends. Because the finite element grid is not long enough
for significant thickening of the thermal boundary layer to occur as it traverses the
box, the imposed cooling time ¢. dictates the approximate thickness of the slab, as in
(4.11).

The cold temperatures of the oceanic lithosphere are responsible for its increased

strength relative to the mantle below. Temperature-dependent viscosity n(7") is gen-
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erally given for dislocation flow as [e.g., Kohlstedt et al., 1995]

o _ B ) (4.16)

n(T') = 1 exp (RT BT

where R = 8.31 J mol™" K™ is the universal gas constant, F, is the activation energy,
and mantle temperature T, yields mantle viscosity n,, [King, 1991]. This viscosity
law is only applied to the lithosphere and mantle, and a maximum viscosity of 10%n,,
is enforced. Although the above viscosity law does not account for the variety of
deformation mechanisms that may occur in the subducting lithosphere, we account
for the strengthening or weakening effects of these mechanisms by allowing £, to vary.
Thus (4.16) can be thought of as defining the effective viscosity of the lithosphere.

Once the velocity boundary conditions have advected the temperature field to
depth, they are replaced by free-slip boundary conditions. The temperature field
then provides negative buoyancy with which the slab can drive mantle flow. This
is achieved by making the Boussinesq approximation and by imposing a nonzero
coefficient of thermal expansion, «, everywhere except for the overriding wedge. We
allow the dense slab to drive convection until a thermally consistent steady state model
of mantle flow is achieved. In other words, the plate descends under its own weight
with a constant velocity v,, and the thermal buoyancy of the plate is determined by the
descent of a slab with this same velocity. We calculate this steady state solution using
a fault zone viscosity of 7, /100 and an activation energy of £, = 100 kJ mol™". The
latter value is smaller than is generally found for olivine in laboratory experiments,
but Christensen [1984a] shows that the effects of stress-dependent viscosity can be
approximated in calculations with Newtonian viscosity by decreasing F,. In any case,
this steady state solution is used only as a starting point for the models described
below in which we allow 7; and E, to vary.

It is potentially difficult to force strong lithosphere into or away from the corners
of the finite element grid. To prevent this difficulty, we apply temperature boundary
conditions to prevent high-viscosity material from nearing the corners (Figure 4.1,

inset). When the slab descends deeper than 800 km depth, its temperature is set to
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T,,, thus eliminating its strength and thermal buoyancy below this depth. Similarly,
as the plate pulls away from the mantle upwelling opposite the descending slab, mantle
viscosities are imposed for the first 200 km of the plate. Buoyancy, however, is still
controlled by the temperature distribution, which is set to mimic that of a ridge by
using (4.10) and allowing ¢. to increase linearly from zero to its full value at 200 km.
In this way, we more realistically generate the small pushing force derived from the
horizontal juxtaposition of buoyant mantle and dense lithosphere, while still allowing
the slab to easily pull away from the edge of the grid.

The importance of the slab and fault zone should depend on their rheology. To
see how they do, we vary the strength of the fault zone by changing its viscosity 7
and the effective viscosity of the lithosphere by changing the activation energy, F,,
associated with temperature dependence in (4.16). The steady state buoyancy field
is used to drive flow for one time step to test the system’s response to each new
rheology. We record the plate velocity and the total viscous dissipation the mantle,
lithosphere, fault zone, and overriding wedge. The lithosphere is distinguished from
the mantle by temperature; elements with average temperatures < 0.9AT + T} are

considered lithosphere.

4.4 Nondimensionalization

The activation energy F, determines how viscosity varies with depth in the litho-
sphere. To determine how the geometry and rheology of the subduction zone affect
its importance to the convecting system, it is useful to estimate an effective viscosity
of the entire lithosphere for a given activation energy. To do this, we use an averag-
ing method suggested by Parmentier et al. [1976] in which viscosity is weighted by
the square of the second invariant of the strain rate tensor ¢ and then averaged over

volume:
fv ne2dV

"= aav (4.17)

We have performed experiments with both Newtonian and strain-rate-dependent rhe-

ology and have found that our results, when expressed in terms of this definition of
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effective viscosity, are independent of the type of rheology applied. As a result, we can
define an effective viscosity that is the result of either Newtonian or non-Newtonian
rheology in a bending lithosphere. In addition, it should be possible to account for
brittle behavior by applying a highly non-Newtonian (plastic) rheology, which ap-
proximates the effects of a yield stress.

We nondimensionalize the lithosphere and fault zone viscosities by the mantle

viscosity: ) )
/ / Ty
m=—- Ny = —— (4-18)
l TIm d TIm

where overbars indicate effective viscosities calculated using (4.17) and primes indicate
dimensionless quantities. We note that a typical velocity is given by v,g = 2éph, =
Tohs/Nm, where ég is a typical strain rate and 79 is a typical stress. Using 79 =

pgaATl,, we nondimensionalize velocity as

' Up
— 4.19
" = (pga AT hylfnm) (4.19)

Because dissipation in the fault zone is related to both its length [; and the shear
stress it supports, 7y, it is useful to express the fault zone strength as the product of
these quantities, made dimensionless using 7y and hy:

[
[ = 19 42
(m¢ls) gL (4.20)

Combining (4.15), (4.18), (4.19), and (4.20), we find

(7ply) = nfolls/wy (4.21)

To calculate (740;)", we areally average the shear stress in the fault zone elements,
multiply by /s, and nondimensionalize this quantity using (4.20). The result is gen-
erally larger than values predicted using (4.21) by roughly 20%. Runs in which the
subducting plate is significantly slowed by the lithosphere’s strength yield fault zone

stresses that are even larger, probably because the stress is less accurately represented
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by the shearing given by (4.15) if v, is small. In any case, the fact that (4.20) and
(4.21) agree as well as they do over orders of magnitude change in both fault zone
and lithosphere viscosity indicates that we can accurately represent a fault zone in a

viscous way.

4.5 Finite Element Results

We have run the finite element code for a range of lithosphere and fault zone strengths
for plate thicknesses of 57, 100, and 157 km. As a result, we are able to determine
how the dimensionless plate velocity varies with 1!, (7;1;), and h, (Figures 4.2a, 4.3a,
and 4.4a). In the nondimensionalization we assume an effective slab length of [, =
700 km, which ignores any contribution from the upper 100 km of the finite element
grid. This is reasonable because the driving buoyancy of the slab is determined by
horizontal variations in density, which are small near the surface due to the slab’s
nearly horizontal orientation there (Figure 4.1).

An isoviscous convecting system with an aspect ratio of A = L/D = 1500/1200 =
1.25 should produce a dimensionless velocity of v, = 0.06, as shown by a comparison
of (4.13) and (4.19) if C,,, = 2, as we estimate later. The finite element results show
that v) is less than this value for all lithosphere and fault zone viscosities shown but
is close to this isoviscous limit for a weak, thin, lithosphere and a weak fault zone
(Figure 4.2a). Thus a strong lithosphere or fault zone significantly slows a plate.
Thick plates are slowed more than thin plates for a given lithosphere viscosity and
fault strength (compare Figures 4.2a, 4.2b, and 4.2¢), especially for plates with high
lithospheric viscosity.

To show that it is indeed the bending of the slab and the shearing of the fault zone
that act in slowing the plate, we plot the percentage of the total viscous dissipation
that occurs in each of the mantle (Figures 4.2b, 4.3b, and 4.4b), lithosphere (Fig-
ures 4.2¢, 4.3¢, and 4.4c), and fault zone (Figures 2d, 4.3d, and 4.4d) as a function
of dimensionless lithosphere viscosity and fault strength for each of the three plate

thicknesses studied. The fraction of the viscous dissipation that occurs in the wedge
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Figure 4.2: Results from the finite element model for a plate thickness of iy = 57 km,
plotted as a function of dimensionless lithosphere viscosity 1] given by (4.18) and the
dimensionless fault strength (7(;)" given by (4.20). Shown are (a) the dimensionless
plate velocity vy, given by (4.19), and the percentage of the total viscous dissipation
that occurs in the (b) mantle, (c) lithosphere, and (d) fault zone. For comparison,
these regions represent 91%, 7%, and 0.5% of the total area of the finite element grid.
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Figure 4.3: Similar to Figure 4.2, for a plate thickness h; = 100 km. The mantle,
lithosphere, and fault zone represent 87%, 11%, and 0.5% of the total area, respec-
tively.

region is everywhere less than < 0.5% of the total and thus is insignificant. Included
in the figure captions is the fraction of the total area of the finite element grid each
region represents. In every case, the fraction of the viscous dissipation that occurs
in the mantle is smaller than its areal fraction. Instead, the lithosphere or fault zone
dissipate more than their share of the total.

In general, as the fault zone strength increases, the plate velocity decreases and
the proportion of dissipation in the fault zone increases, indicating that an increased
resistance in the fault zone slows the plate. We also observe the same general trend
of decreased plate velocities and increased dissipation in the lithosphere as either

the thickness or viscosity of the lithosphere increases. The fraction of dissipation in
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Figure 4.4: Similar to Figure 4.2, for a plate thickness h; = 157 km. The mantle,
lithosphere, and fault zone represent 82%, 16%, and 0.5% of the total area, respec-

tively.

the lithosphere increases with decreasing lithosphere strength, however, if the fault
zone is strong but the lithosphere is weak. This is because a strong fault zone acts
to pin the surface of the slab to the overriding wedge.
significant shearing is permitted within the slab, causing viscous dissipation in the
slab to increase. This motion, however, is not plate-like because the fault zone does

not accommodate motion of the subducting plate past the overriding wedge.
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fault zone, by definition, must be weaker than the subducting plate.
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4.6 Theoretical Prediction of Plate Velocity

The finite element results show that the plate velocity decreases significantly from
its expected isoviscous value when a strong lithosphere or fault zone are present.
Because the expression for the plate velocity (4.13) arises from a balance between
viscous dissipation and potential energy release, it is clear that the expression for
this balance becomes incorrect as we increase the strength of the lithosphere or fault
zone. The expression for potential energy release (4.12) should not be altered by
this change, but the expression for viscous dissipation should include the dissipation
that occurs in the fault zone and the lithosphere. We attempt to combine the viscous
dissipation in these regions with that of the mantle in (4.8) to obtain an expression for
velocity similar to (4.13). To do this, we first characterize fault zone and lithosphere

dissipation.

4.6.1 Fault Zone Dissipation

The pattern of viscous dissipation in the fault zone is shown by Figure 4.5 for a strong
fault zone with an intermediate lithosphere viscosity. It is clear that the largest rate
of viscous dissipation is found within the elements of the fault zone and is typically
between 50 and 100 times the mean value for the entire finite element grid. For a plate
velocity of v, = 10 cm yr~! and the mantle parameters given later, we estimate, using
(4.12), an average potential energy release of 1.7 x 1078 W m™ for a convecting cell.
Assuming a specific heat of C, = 1100 J kg™' K™', the concentration of this heating
by a factor of 100 within the fault zone should cause temperatures there to increase
by 75°C in the 5 Myr it takes for a subducting material to pass through 500 km
of subduction zone. This heating may weaken the fault somewhat but should be
primarily carried away by thermal diffusion into the adjacent cold slab.

We have shown that the decrease in velocity from v, to zero across the fault zone
of width w; and area [jw; generates a shear stress 7y given by (4.15). If 7 is nearly

uniform along the fault’s length, the dissipation in the fault zone CI);Zd can be expressed
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Figure 4.5: Distribution of viscous dissipation (gray shades) and the directions of
most extensile deviatoric stress (arrows) for hy = 100 km and viscous parameters
that yield a relatively weak lithosphere and a relatively strong fault zone. Here,
n, = 22, (14l;) = 0.15, and v, = 0.018. For reference, the upper surface of the
fault zone is represented as a solid line. The density of viscous dissipation is shown
as a multiple of the average value for the entire finite element grid. The length of
arrows is scaled by the log of the amplitude of the dimensionless deviatoric stress,
" = 7/(pgaAThy), and stresses a factor of 10° smaller than the maximum stress
are given zero length. The percentages of the total viscous dissipation in the mantle,

lithosphere, and fault zone are 36%, 27%, and 37%.
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using (4.7):
oY = 7yu,l; (4.22)

Neither the width of the fault zone w; nor its viscosity, 1y, are used in this estimation
of dissipation. Faults in real subduction zones are not viscous but may exhibit brittle
or plastic rheology and thus should support some degree of shear stress over some

length, so we can still estimate their contribution to the total viscous dissipation using

(4.22).

4.6.2 Lithosphere Dissipation

The lithosphere exhibits a more complicated pattern of dissipation than does the fault
zone, as is shown in Figure 4.6 for a strong lithosphere and a weak fault zone. There
appear to be four primary regions of contribution to the total dissipation. As the slab
begins to subduct, one region near the top of the slab exhibits extensional stresses
along its length, while another region below it is under horizontal compression. This
pattern is reversed as the slab exits the curved part of the subducting slab. These
stresses are similar to fiber stresses in a bending elastic plate, as described by Turcotte
and Schubert [1982, pp. 112-115]. As the slab begins to descend, it must deform
into a bent shape, which forces the surface of the slab to expand while its base
contracts. As the slab continues to descend, it must unbend from a curved shape into
a straight one. The recovery of this straightened shape requires undoing the inelastic
deformation that originally bent the slab. Thus the top surface of the slab contracts
while the bottom surface expands. This stress pattern matches the one observed in
Figure 4.6 and generates an amplification of viscous heating by up to a factor of 100
(Figure 4.6). If we assume that the average heating of slab material as it travels
through the subduction zone is half of this, we expect the slab to only warm by 35°C,
which should not significantly affect its material strength.

We estimate the dissipation associated with the observed stress pattern by analyz-
ing the bending and unbending deformation. It can be shown using similar triangles

[ Turcotte and Schubert, 1982, pp. 114-115] that the horizontal strain ¢,, associated
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Figure 4.6: Similar to Figure 4.5, for h; = 100 km and viscous parameters that
yield a relatively strong lithosphere and a relatively weak fault zone. Here, 1; = 3500,
(1407) = 1.8 x107%, and vy = 0.0021. The percentages of the total viscous dissipation
in the mantle, lithosphere, and fault zone are 7%, 93%, and 0.003%.

with bending is

o = —— = = (4.23)

where Al. is the change in length [. of a fiber in the curved part of the slab, y is
the distance from the centerline of the slab, and R is the radius of curvature with
which the bending occurs. We can obtain a strain rate by dividing by a typical
timescale for bending. In this case, [./v, is an appropriate timescale because the slab

is being strained as it is being pulled through the curved part of the subduction zone.
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However, [. is proportional to R, so we can approximate the strain rate as
€pp ~ ——= (4.24)

Combining (4.7) and (4.24), the viscous dissipation in the lithosphere, ®}4, is

v hal2 v, y\ 2
oY ~ Ly, /_h , (Epﬁ) dy (4.25)

Performing this integral and using the fact that /. is proportional to R, we find

h 3

where we have introduced the constant C; in which we incorporate all constants of
proportionality and integration that arise in the derivation. Thus we find that the
lithospheric dissipation depends on the cube of the ratio of the thickness of the slab

to its radius of curvature.

4.6.3 Expression for Plate Velocity

The sum of the dissipation rates for each of the mantle, fault zone, and lithosphere
yields the total dissipation in the convecting system, which should equal its rate of

potential energy release, as shown by (4.2). Thus
ore = o + o7 + 9 (4.27)

Combining (4.8), (4.12), (4.22), and (4.26) and solving for the plate velocity, we find

CspgaATIlhy — Cyrely
v, —
" 30 (A4 C) + Oy (b R)?

(4.28)

where we assign C; = 1/y/7 and introduce the constant C'y, which should be close
to unity, to account for possible inconsistencies between the theory used to derive

(4.28) and the finite element results. If we apply the nondimensionalizations we have

153



previously developed in (4.18), (4.19), and (4.20) to (4.28), we find

o — Cs — Cy (msly)|
P 3(A+ Cn) + Culf (he/ R)

(4.29)

We compare the dimensionless velocity observed in the finite element results (Fig-
ures 4.2a, 4.3a, and 4.4a) to the velocities predicted by (4.29) in Figure 4.7. This
comparison requires us to estimate the constants C,, ), and C;. To do this, we
look first at the velocity curve for hy = 157 km, logn! > 2, and (7¢l;)" = 0.005 (Fig-
ure 4.7a). In this region, lithosphere dissipation largely determines the velocity, as
seen in (4.29) where the second term in the denominator dominates. We find that
7 = 2.5 gives a good match for this portion of the line when (), and C} are unity.
We next determine (', by approximately matching this same curve near log n; = 0.5,
where the mantle dissipation is most important, and find that C,, = 2.5 gives a
good match. Finally, we determine C; by matching the curves for (r;0;) = 0.3
(Figure 4.7d) where the fault zone is most important, finding C'y = 1.2.

The results shown in Figure 4.7 show that both the hA; = 100 km and h, =
157 km curves are well matched between the finite element results and theory. This
match is impressive given that it occurs over orders of magnitude variations in the
dimensionless lithosphere viscosity and fault zone strength, where the importance of
each ranges from negligible to governing. The third set of curves, hy = 57 km, shows
finite element velocities that are consistently larger than predicted, but the match
is not unreasonable, and the predictive power of (4.29) does not appear significantly
diminished. One explanation for the discrepancy could be that the thinner slab
has a longer effective slab length [; because more of the curved part of the slab
can participate in pulling the slab downward. The result of increasing [; is most
easily seen by first redimensionalizing both the observed and predicted curves using
the previous value of [, that we used to nondimensionalize them. This yields the
dimensional values of the observed plate velocity, to be matched by (4.28). Using a
larger value of [, in (4.28) increases the predicted value of v, by increasing the driving

buoyancy of the plate. Thus assuming a larger value of [, for the h; = 57 km curves
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Figure 4.7: A comparison of the dimensionless velocity vy obtained from the finite
element calculations (thick lines) to the velocity predicted by theory (thin lines) using
(4.29). Velocity is nondimensionalized using (4.19) and is plotted as a function of the
log of the dimensionless lithosphere viscosity ] for four different dimensionless fault
zone strengths (70;)" and for plate thicknesses of hy, = 57, 100, and 157 km (solid,
dashed, and dotted lines). We use C,, = 2.5, Cy = 1.2, and C; = 2.5 in (4.29), which

are estimated as described in the text.
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should bring their observed and predicted velocities closer together. This effect will
be more pronounced for a strong fault zone because the numerator of (4.28) is smaller
so a constant increase in the driving buoyancy should cause a proportionally larger
increase in velocity. This could explain the larger discrepancy for the thin plate in
Figure 4.7d.

Theory predicts that C'; should be unity, but it is larger by 20%. One explanation
for this discrepancy could be that (4.22) underestimates fault zone dissipation by 20%,
requiring a corresponding increase in Cy to yield the correct dissipation. Another
possibility is again a change in the length of the slab, [;. Decreasing the slab length
by, say, a factor of 1.2 would cause a decrease in the first term in the numerator
of (4.28). To prevent a decrease in plate velocity, we could decrease C; and ()
by the same factor and C,, by a different factor that depends on A. This would
approximately yield C'y = 1, as predicted by theory, and €, = C; = 2. This group of
constants, combined with the new shorter slab length, causes the lines in Figure 4.7
to match as well as they currently do, only at larger dimensionless velocities because
they are nondimensionalized with the shorter slab length (4.19). This seems a likely
explanation because it involves changing the effective length of the slab, a quantity
that is difficult to estimate and may also be responsible for the discrepancies seen for

thinner plates. Thus we proceed using C'; =1 and C,,, = C; = 2.

4.7 Comparison to Observed Plate Velocities

Plates that are attached to subducting slabs move faster than those that are not
le.g., Forsyth and Uyeda, 1975; Gripp and Gordon, 1990]. The difference is striking;
plates with an attached slab move with velocities between 6 and 9 cm yr~! while
those without generally move slower than 2 cm yr~! when velocities are measured
relative to the hotspot reference frame [e.g., Forsyth and Uyeda, 1975; Gordon and
Jurdy, 1986]. The more rapid motion of slab-bearing plates is thought to indicate
that the pull of slabs plays a dominant role in propelling the plates [e.g., Gripp and
Gordon, 1990].
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Earth’s slab-bearing plates exhibit a wide range of horizontal length scales, as
shown in Table 4.1, where two estimates of the plate length I are given. If a plate
moves with constant velocity and does not change in size, the plate length is given
by L = A,v,, where A, is the age of the plate as it begins to subduct. Because
Ay varies along the horizontal length of the subduction zone, the ages presented in
Table 4.1 are averages determined by taking the length-weighted average of slab ages
given by Jarrard [1986]. For the Pacific plate, three separate subducting regions are
given, as well as their average. Another approximation to the horizontal length scale
of the plate is the square root of the area of the plate. It is apparent from Table 4.1
that both approximations for L are about the same for each plate and that Earth’s
plates exhibit about an order of magnitude variation in plate length, from 1500 km
for the Cocos plate to 10,000 km for the Pacific plate. The velocities associated with
these plates, however, are not correlated to these length scales (Table 4.1). All slab-
bearing plates, with the exception of the small Juan de Fuca plate, move with absolute
velocities between 6 and 9 cm yr~!. This consistency of plate velocities is supported
by the past history of plate motions. Gordon and Jurdy [1986] show that nearly
all oceanic plates have moved with velocities between 5 and 9 cm yr~! throughout
the Cenozoic. Some exceptions include the Kula, Farallon, and Indian plates, which

Lin the early Cenozoic, and the slow Juan de

achieved velocities of 11 to 14 cm yr~
Fuca plate today.

The lack of a relationship between plate velocity and length is somewhat surpris-
ing, because if the resistive forces of plate tectonics depend on the shearing of the
underlying mantle, smaller plates should move more rapidly than larger ones [e.g.,
Morgan, 1971]. Thus, if the velocity is given by (4.13), we expect longer plates to
be slowed. This, of course, assumes that the driving force of each plate is the same.
We do not expect this to be true, because longer plates should have thicker slabs,
which will drive them faster. The equilibrium relationship between velocity and plate
length is given by (4.14), which has a flatter dependence on L than does (4.13). This

could help explain the lack of variation of v, among oceanic plates, but v, in (4.14)

still depends on L.
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Table 4.1. Subducting Plate Data

Plate Velocity?ecm/yr  Subducting Age? Ma Plate Length, km
vp A, L=Ayw,  L=+/Plate Area®

Cocos 8.6 17 1500 1700
Indian 6.1 105 6400 7700
Juan de FucaP 3.4 8 300
Nazca 7.6 51 3900 3900
Pacific

Total 8.0 104 8300 10400

South 8.0 94 8000 10400

Japan 8.0 128 10240 10400

Alaska 8.0 47 3800 10400
Philippine 6.4 37 2400 2300

*From Forsyth and Uyeda [1975].

bFrom Jarrard [1986].

By including the energy dissipation of the fault zone and lithosphere in the total
energy balance of the convecting cell, a new variation of v, with L should result.
It is possible that by adjusting the strengths of the lithosphere and fault zone, we
can find a new distribution of plate velocities that is consistent with the observation
that v, does not depend on L. To determine the range of lithosphere and fault zone
strengths in which this occurs, we first express the plate velocity v, as a function of

plate thickness h; using a variation of (4.28) and (4.29):

o — pgaATlhy  hy/(hoy/T) — (751}
g Mo 3(A+2)+ 2] (hy/R)’

(4.30)

where we have changed the nondimensionalization of fault zone strength by replacing
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hs by hg in (4.20). This is done so that the dimensional value of the fault zone strength
does not change with the plate thickness. We let hy have a constant value of 100 km,
but this value has no physical meaning, since the dimensional fault strength is not
dependent on it. We also assume &£ = 107¢ m? s7', p = 3300 kg m™>, g = 10 m s~2,
a=3x10"" K™, AT = 1200°C, I, = 1000 km, and D = 2500 km. The radius of
curvature of the descending slab, R, is taken to be 200 km, after estimates by Bevis
[1986] and [Isacks and Barazangi [1977]. Below, we determine how plate velocity
v, varies with plate length L for various choices of the fault zone and lithosphere
strengths (740¢)" and n]. Because value of the the mantle viscosity 7,, is not well
constrained, we use it as a free parameter that we can adjust to match the magnitude
of plate velocities to those found on Earth.

The thickness of a plate as it begins to subduct depends on its age and hence
on its length and velocity as in (4.11). This relationship between plate velocity and
thickness is shown by solid lines in Figure 4.8 for plate lengths that correspond to
those of the Cocos and Pacific plates (L = 1500 and 10,000 km). These curves are
members of a larger family of curves that satisfy the thickness-age relationship of
(4.11) for each value of L. To determine the velocity of plates of a given length, we
apply (4.30). Curves for this expression are also plotted in Figure 4.8 for four models
of ] and (74{;)" and for the two values of L. The intersections of these two sets of
curves are denoted by circles in Figure 4.8 and give the velocity and thickness of a
plate for each of the four models and for the two plate lengths L. For each model
of subduction zone strength we have chosen 7, in (4.30) such that the Cocos plate
curves (L = 1500 km, thin lines) intersect to give the actual Cocos plate velocity of
8.6 cm yr~!. We then calculate, for each model, the velocity and thickness solutions
for the Pacific plate (L = 10,000 km, thick lines) using the same viscosity we used
for the Cocos plate. We can evaluate each model of subduction zone strength by its
ability to predict the Pacific plate velocity (8 ecm yr™!).

For a strong lithosphere, solutions only exist for the Pacific plate in the limit that
the lithosphere grows very thick and velocities approach zero (observe that the thick

curved solid line never crosses the dotted and dashed lines in Figure 4.8b). In fact,

159



v_(cmlyr)

0 25 50 75 100 125 150 175 200
h, (km)

b) Strohg Litho'sphere ' '
r]l' =200

16

Cocos:L = 1500 km
Pacific:L = 10000 km
Thickness—Age Relation):
v = AL ]

L; Fault Strength:

E XYY YYYY) ('[f lf) :OOO
S I

>Q.

0 1 1
0 25 50 75 100 125 150 175 200
h, (km)

Figure 4.8: Solutions for the plate velocity v, and thickness hy of plates for two
ridge-to-trench plate lengths L = 1500 km for the Cocos plate (thin lines) and L =
10,000 km for the Pacific plate (thick lines). Solid lines satisfy the thickness-age
relationship (4.11). Dashed and dotted lines represent the balance between viscous
dissipation and potential energy release given by (4.30). For cases in which the
resulting plate thickness is larger than 100 km, we also plot the intersection of (4.30)
and hy = 100 km, which represent solutions for plates that cannot grow thicker than
100 km. For each model of lithosphere and fault zone strength the mantle viscosity
Nm 1s adjusted to yield the Cocos plate velocity of v, = 8.6 cm yr~! for L = 1500 km.
The required values of 1, can be estimated from Figure 4.11a. (a) Curves for a weak
lithosphere of 1, = 20. (b) Curves for a strong lithosphere of 1 = 200. In both
Figures 4.8a and 4.8b, the dotted and dashed lines show (7(;)" = 0 and 0.15 for a

strong and weak fault zone, respectively.
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if n] is large, both (4.30) and (4.11) have velocities that vary as 1/h? for large hs,
meaning that solutions only exist for v, = 0. To obtain nonzero plate velocities and
still allow strong plates, we must place a limit on the thickness of the lithosphere.
This is perhaps not unrealistic because at some point a growing boundary layer must
become unstable and cease to thicken [e.g., Howard, 1964; Jaupart and Parsons, 1985].
We thus disallow thickening beyond an age of 80 Ma, the point at which the linear
relationship between seafloor depth and the square root of its age is observed to break
down [e.g., Parsons and Sclater, 1977]. There is some controversy over whether this
observation is real and over the physical mechanism by which it occurs if it is, but we
will assume that this breakdown is accompanied by a corresponding cessation of plate
thickening at 100 km, the thickness given by (4.11) for 80 Ma. Thus, if solutions to
(4.11) and (4.30) require plate thickness > 100 km, we allow solutions for both the
thick plate and for h; = 100 km in Figure 4.8.

The four models of lithosphere and fault strength produce different variations of
velocity with plate thickness, as shown by the dashed and dotted curves in Figure 4.8.
If the fault zone is weak (dotted lines), the velocity variation with h; depends on the
two denominator terms of (4.30). For small Ay the bending term is small, so the
constant mantle term dominates, causing (4.30) to increase approximately linearly
with h, as the buoyancy increases. As h; increases, the lithosphere term begins to
dominate, and the curve for (4.30) bends over and decreases as 1/h? for large hs.
The thickness at which the lithosphere term begins to become important depends
on the dimensionless lithosphere viscosity 7;. The effect of increasing the fault zone
strength is to decrease the numerator of (4.30), causing zero velocity at a nonzero
thickness and approximately shifting the curves for (4.30) to the right. As a result, the
Pacific plate curves intersect the thickness-age relationship at different velocities for
different combinations of fault zone and lithosphere strength (thick lines, Figure 4.8).
Only two of the four models produce realistic plate velocities for both the Cocos
and Pacific plates. If the lithosphere is weak (Figure 4.8a), the fault zone must also
be weak (dotted line) or Pacific plate velocities are too large. If the lithosphere is

strong (Figure 4.8b), nonzero plate velocities are only obtained if the maximum plate
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thickness of i, = 100 km is enforced. In this case, realistic velocities of ~ 8 cm yr™1

are only obtained for the Pacific plate if the fault zone is also strong (dashed line).

The parameter space of dimensionless lithosphere and fault zone strength is more
fully explored in Figure 4.9, where solutions for plate velocity are plotted as a function
of plate length L. For each subduction model of lithosphere and fault zone strength,
two solutions are given: one for which a maximum thickness of 100 km is enforced
and one for which h; > 100 km is permitted. As before, the one remaining free
parameter, the mantle viscosity n,,, is adjusted for each model so that plates of length
L = 1500 km have velocities equal to 8.6 cm yr~!, the set of values appropriate for
the Cocos plate. We can now test a given model’s validity by seeing if it gives realistic
plate velocities for all values of L between the Cocos and Pacific plate lengths. It
is clear that for all but the weakest lithosphere strengths, we must restrict the plate
thickness to 100 km in order to get reasonable plate velocities at large L. For weak
fault zones of (7;1;)" = 0.0 (Figure 4.9a), a dimensionless lithosphere viscosity near
n, = 60 yields a variation of velocity with L that is confined to the observed range
of 5to 9 cm yr~!. Greater values of 5] give velocities that are too small for large L,
while smaller values yield velocities that are too large. As observed in Figure 4.8,
larger fault zone strength requires greater dimensionless lithosphere viscosity. For
example, if (77(;)" = 0.15 (Figure 4.9d), a lithosphere viscosity between about 5] = 200
and n; = 600 seems to produce a good range of plate velocities. Intermediate fault
zone strengths require intermediate dimensionless lithosphere strengths, as shown in
Figures 4.9b and 4.9c. Thus we can obtain a reasonable set of plate velocities for
all fault strengths (7¢(;)" between 0.0 and 0.15 but only for specific values of the
lithospheric strength 7] that increase with fault strength.

The portion of the parameter space defined by the dimensionless lithosphere and
fault zone strengths that yields Earth-like plate velocities for all plate lengths is high-
lighted in Figure 4.10. This region is defined such that all plates of lengths between
1500 and 10,000 km (representing the Cocos and Pacific plates) have velocities be-

1

tween 4 and 11 cm yr~', a more liberal constraint than the one Earth places on the

range of plate velocities. The band of models that produce acceptable plate velocities
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Figure 4.9: Plots of plate velocity v, as a function of plate length L that represent
solutions to (4.11) and (4.30) such as those shown in Figure 4.8. For each curve
the mantle viscosity n,, is adjusted so that the curve gives a solution that fits the
Cocos plate, where v, = 8.6 cm yr™* and L = 1500 km (denoted by a star). Two
curves are given for each model, one in which a maximum plate thickness of 100 km
is enforced and one in which it is not. The branching of the two models is denoted by
a dot, with the smoother line representing the thick plate curve. Sixteen models are
presented, showing fault strengths (74(;)" of (a) 0.0, (b) 0.05, (c¢) 0.1, and (d) 0.15.
Dotted, dash-dotted, dashed, and solid curves represent n; values of 20, 60, 200, and
600, respectively. The mantle viscosities associated with each model can be estimated

from Figure 4.11a.
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runs through values of (740¢)" between 0.0 and about 0.2. As observed in Figure 4.9,
strong fault zones for which (7¢/;)" > 0.15 require the lithosphere viscosity to be
> 300 times that of the mantle to produce reasonable plate velocities. For weaker
fault zones, lithosphere viscosities between 50 and 300 times 7, are required.

The fraction of the total viscous dissipation that occurs in each region of the plate
system is also shown in Figure 4.10, for plate lengths of 10,000 km (Pacific plate) and
1500 km (Cocos plate). For both the Pacific and Cocos plates the viscous dissipation
in the lithosphere remains approximately constant throughout the shaded region. For
the Pacific plate the lithosphere dissipates between 50 and 70% of the total potential
energy (Figure 4.10c). This value is larger than the corresponding 15 to 30% for
the Cocos plate (Figure 4.10f) because the Pacific plate bends into the mantle with
the maximum thickness of iy = 100 km, which generates more dissipation. For the
Cocos plate the decrease in lithosphere dissipation is accompanied by an increase in
dissipation in both the fault zone and the mantle.

The correlation between the highlighted region of reasonable plate velocities and
contours of lithosphere importance (Figures 4.10c and 4.10f) is a consequence of the
two sharing the same pattern in dimensionless lithosphere-fault zone strength space.
The fact that they do has a consequence for the dimensional value of lithosphere vis-
cosity predicted by our models. The percentage of lithosphere dissipation is given by
the ratio of (4.26) to (4.12). The result is proportional to v,, k%, n;, and other parame-
ters that are constant between models. Because the fraction of lithospheric dissipation
is approximately constant in the region of reasonable velocities, the product of these
three terms must be constant. We have defined v, to be constant, and for large L, hy
is a constant 100 km. Thus »; should be constant among the acceptable models. This
is shown in Figure 4.11b, in which the contours of dimensional lithosphere viscosity
approximately follow the shaded region of realistic velocities. From Figure 4.11b, we
estimate an effective viscosity for between about 60 and 150 x 10?' Pa s. Thus, as
fault zone strength increases, the required increase in the dimensionless lithosphere
viscosity 7] is achieved through a decrease in mantle viscosity, not an increase in

lithosphere viscosity.
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Figure 4.10: Model results that yield the Cocos plate velocity v, = 8.6 Pa s for
the Cocos plate length L = 1500 km for the solution of (4.11), (4.30), and h, <
100 km, plotted as a function of both lithosphere strength 1] and fault zone strength
(1¢lf)’. The shaded region represents the portion of parameter space that produces
a “realistic” distribution of plate velocities, defined such that plate velocities fall
between 4 and 11 cm yr~! for all values of L between 1500 and 10000 km. To the
upper left of the shaded region, maximum velocities are > 11 cm yr™'; to its lower
right, minimum velocities are < 4 cm yr~!. The percentage of viscous dissipation
that occurs in the (a) mantle, (b) fault zone, and (c) lithosphere are shown for a plate
length of L = 10,000 km, corresponding to the Pacific plate. (d), (e), and (f) show
these percentages for a plate of length I = 1500 km, corresponding to the Cocos

plate.
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Figure 4.11: Results for the models shown in Figure 4.10, with the shaded area again
representing the portion of parameter space that produces a realistic distribution of
plate velocities. (a) Mantle viscosity, given in units of 10*! Pa s, that is required
to produce the Cocos plate velocity of v, = 8.6 cm/yr for the Cocos plate length,
L = 1500 km. (b) Lithosphere viscosity for these models, which is simply the product
of the mantle viscosity and the dimensionless lithosphere viscosity (the horizontal
axis). The vertical axis in Figure 4.11b is the same as that of Figure 4.11a, only
expressed in dimensional units using (4.20) and the parameter values given in the
text.

The results described above are obtained by adjusting one free parameter, the
mantle viscosity, so that each model of lithosphere and fault zone strength yields the
Cocos plate velocity of v, = 8.6 cm yr™' at L = 1500 km length. Our results thus
depend on our choice of the Cocos plate as a “reference” plate and may not be repre-
sentative if the Cocos plate velocity is anomalously large or small. If it were greater
than the observed value of 8.6 cm yr~!, the curves in Figure 4.9 should be shifted up-
ward by a constant factor, making some of the large 7] curves “realistic,” according to
our previous definition. Similarly, if the Cocos plate velocity were decreased, curves
for smaller values of 1] would become appropriate. Indeed, tests show that the shaded
regions in Figures 4.10 and 4.11 should be widened if we allow for a distribution of
velocities for the Cocos plate. Similarly, the choice of another reference plate, such as
the Nazca plate, serves to widen the range of “acceptable” subduction zone models.

These changes, however, are not great, and we have already accounted for some of
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this variation by using a liberal range of plate velocities to constrain our realistic set
of subduction models. Thus we continue by drawing conclusions using the results

shown in Figures 4.10 and 4.11 as a guide.

4.8 Application to the Earth’s Subduction Zones

Independent estimates of mantle viscosity could be used in conjunction with Fig-
ure 4.11a to help constrain the strength of the lithosphere and fault zone. Estimates
of mantle viscosity, however, are currently uncertain to within an order of magnitude,
the range expressed in Figure 4.11a. In addition, because mantle viscosity varies sig-
nificantly with depth, it is unclear how a mantle viscosity profile should be averaged
in order to compare it to Figure 4.11a. In effect, we have defined the mantle viscos-
ity in (4.8) as the viscosity that is needed to allow (4.8) to yield the total viscous
dissipation in the mantle, which does not necessarily correspond to independent es-
timates derived from geoid or postglacial rebound studies. In addition, the viscosity
estimates in Figure 4.11a are generated by assuming the effective length of the neg-
atively buoyant portion of the slab to be [, = 1000 km. The value of this quantity
is the subject of some controversy and may be diminished if the slab has difficulty
penetrating the phase change [e.g., Tackley, 1995] or jump in viscosity [e.g, Gurnis
and Hager, 1988] at 670 km depth. Lithgow-Bertelloni and Richards [1995], on the
other hand, estimate that slabs in the lower mantle contribute ~ 70% of the total
force needed to drive the plates, suggesting that [ should extend deeply into the lower
mantle. Our estimate of [, = 1000 km is intermediate between these two extremes,
but if it is incorrect, the estimates of mantle and lithosphere viscosity (Figures 4.11a
and 4.11b) should be changed in proportion to [5, as shown by (4.30).

If the strengths of the lithosphere and the fault zones were well known, we could
use Figure 4.10 to determine the relative importance of the mantle, lithosphere, and
fault zone in dissipating convective energy. The effective lithosphere viscosity n;
is particularly difficult to constrain because it represents an attempt to relate the

complicated rheological laws of non-Newtonian rheology and brittle failure to simple
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viscous flow. In addition, any errors in our estimate of the radius of curvature of
bending slabs, R, are mapped into n;. As shown by (4.30), an increase in R can be
balanced by a corresponding increase in 1] by the cube of the change in . Thus it is
difficult to precisely estimate n; for Farth. Using B = 200 km, the range of acceptable
lithosphere viscosities is between 60 and 150 x 10?* Pa s (Figure 4.11b). The mantle
viscosity required is close to 10! Pa s for weak fault zones and smaller for strong
fault zones (Figure 4.11a). It is reasonable that significant temperature-dependent
strengthening occurs in the lithosphere, so this range of lithosphere viscosities seems
plausible.

To estimate the strength of the fault zone, we estimate its length and the shear
stress it supports. An analysis of the seismicity under Japan [Hasegawa et al., 1994]
reveals low-angle thrust events occurring along the upper surface of the plate. If
these earthquakes represent slip on the plate bounding fault, this fault appears to
be ~ 200 km long. The stress on such faults can be estimated in several ways.
Earthquake stress drops on plate bounding faults are typically < 10 MPa [e.g., Hanks,
1977; Kanamori and Anderson, 1975]. This provides a lower bound on the typical
fault stress, but if earthquakes do not relieve all of the stress on the fault, the actual
stress could be larger. Hanks [1977] speculates that plate-bounding faults support
stresses of the order of 100 MPa down to ~ 15 km, at which point the strength of
rocks decreases due to an increase in temperature. Hickman [1991] suggests that
although faults should be capable of supporting such stresses, the lack of heat flow
anomalies associated with plate-bounding strike-slip faults indicates that the stress on
these faults must be downward of 20 MPa. Molnar and England [1990], on the other
hand, use heat flow estimates near major subduction zone thrust faults to estimate
that stresses on these faults must exceed 30 MPa. Finally, Zhong and Gurnis [1994]
show that trench topography is best matched in dynamic models of subduction zones
if major thrust faults support shear stresses of 15 to 30 MPa to 100 km depth.

Average fault stresses of 10 to 100 MPa supported over 200 km yield fault strengths
between 2000 and 20,000 MPa km, which, when made dimensionless using (4.20),

yields (7¢l;)" between about 0.017 and 0.17. This range gives essentially no constraint
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on fault strength in Figures 4.10 and 4.11, but if we assume that faults are weak, we
need only consider dimensionless fault strengths less than about (74(;) = 0.05. In this
case, the dissipation in the fault zone must be < 10% of the total for thick (Pacific)
plates and < 20% for thin (Cocos) plates (Figures 4.10b and 4.10e). Because the
lithosphere dissipation is consistently ~ 60% of the total for thick plates and 20%
for thin plates (Figures 4.10c and 4.10f), the mantle component of dissipation is
~ 20 — 40% for thick plates and 60 — 80% for thin plates (Figures 4.10a and 4.10d).

4.9 Discussion

To estimate the relative importance of the lithosphere, fault zone, and mantle in
resisting convective motions, we use an energy balance between the rate of viscous
dissipation and the rate of potential energy release. In doing so, we ignore the effects
of heating associated with viscous dissipation in both our finite element calculations
and our analytic theory. This is consistent with our assuming an incompressible fluid
in (4.5), which eliminates the pressure work term. For a compressible fluid, including
viscous dissipation mainly affects the details of the temperature field and hence the
details of the distribution of internal buoyancy and potential energy release. Backus
[1975] and Hewitt et al. [1975] show that for a compressible fluid the net cooling
associated with the pressure term globally balances the temperature increase due
to viscous heating. Thus we do not expect an important change in the global rate
of potential energy release. Viscous heating might have an important effect locally
in regions of concentrated dissipation such as fault zones and slabs because of the
temperature dependence of effective viscosity. For fault zones, we already use an in
situ effective rheology. For the slab although the rate of dissipation can be high,
the time a parcel of material spends in a region of high dissipation is short, so its
temperature increase is small.

By balancing viscous dissipation and potential energy release, we have defined a
range of lithosphere and fault zone strengths for which plates move at speeds within

the range observed on Earth (5 — 9 cm yr™!). There are a few plates, however,
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that do not move with velocities within this range. For one, the small Juan de
Fuca plate is currently subducting at < 4 cm yr~' (Table 4.1). In fact, our model
predicts a slow velocity for short plates (Figure 4.9) because the negative buoyancy
of their thin subducted slabs is small. Another exception is the slow subduction of
the North American, South American, and Antarctic plates under the Caribbean,
Scotia, and South American plates [Jarrard, 1986]. The horizontal extent of these
slabs represents only a small fraction of the perimeter of the plate to which they are
attached [Forsyth and Uyeda, 1975], so we can not expect the pull of the subducted
slab to be a significant driving force for these plates.

Plate velocities in the early Cenozoic (64-43 Ma) were slightly larger than those
observed today. An examination of individual plate motions shows that the increase in
plate velocity is significant for the Indian, Kula, and Farallon plates, which traveled
close to 14 cm yr™! in the early Cenozoic [Gordon and Jurdy, 19836]. Plate recon-
structions [Gordon and Jurdy, 1986; Lithgow-Bertelloni and Richards, 1998] show
that during this time period the Kula and Farallon plates were shrinking in size as
their ridges moved closer to their subduction zones. Our model assumes that the
plate is in a steady state. In particular, we assume that the plate thickness asso-
ciated with buoyancy is the same as that associated with bending, so that the two
values of h, in the plate velocity equation (4.28) are the same. For a shrinking plate
the slab is composed of material that subducted with an age older than that of the
material that is currently subducting. Thus the thickness associated with buoyancy
in the numerator of (4.28) should be larger than that associated with bending in the
denominator. As a result, a shrinking plate should travel with a faster velocity than
a plate that is in steady state. It is possible that the Kula and Farallon plates were
propelled at faster rates during the early Cenozoic due to the fact that they were
shrinking during this time period. The Indian plate, however, does not appear to
change in size while its velocity is near 14 cm yr=! [Gordon and Jurdy, 1986).

Other mechanisms could be responsible for variations in plate velocities. First,
transform faults could affect a plate’s velocity by forcing it to travel in a direction

parallel to the fault’s strike and at an angle to the pull of the subduction zone [e.g.,
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Lithgow-Bertelloni and Richards, 1998; Zhong et al., 1998]. In addition, R or [; could
change with time or between plates, yielding variations in v,, as shown in (4.28).
Finally, complications to mantle convection induced by variations in viscosity and
the presence of phase changes could affect plate motions [e.g., Bunge et al., 1996;
Hager and O’Connell, 1979; Tackley, 1995; Van der Hilst et al., 1997; Zhong and
Gurnis, 1995a).

We have shown, however, that the mantle plays an important role only for short
plates and for long plates the lithosphere is dominant (Figure 4.10). Thus the mantle
dynamics may play a secondary role to subduction zone dynamics in controlling the
patterns and rates of mantle convection. This observation could have important im-
plications for Earth’s history and future. In an isoviscous Earth, plate velocities scale
with mantle viscosity [e.g., Turcotte and Ozburgh, 1967]. Thus a small decrease in
mantle temperature should cause plate velocities to slow considerably because mantle
viscosity is highly temperature dependent. The strength of subduction zones, how-
ever, should primarily depend on Earth’s surface temperature, which should remain
fairly constant over most of Earth’s history. If subduction zones indeed provide a
primary resistance to convection in the mantle, the independence of their strength
from changes in mantle temperature could cause plate velocities to be stabilized over
geologic time, despite lower mantle viscosity during warmer periods of Earth’s his-
tory. In the future, a cooling Earth should continue to convect in the current plate
tectonic regime until mantle viscosity increases to the point at which it produces more
dissipation than the bending lithosphere. From (4.28), we see that this requires about
an order of magnitude increase in 7, unaccompanied by a similar change in ;. Thus
one role of strong subduction zones could be to stabilize plate tectonic rates over long
periods of Earth’s history.

Another parameter that is important in controlling plate velocities is the maxi-
mum thickness of the oceanic lithosphere, which we have taken here to be 100 km.
If the lithosphere can grow thicker than this, the additional bending stresses, which
depend on the cube of plate thickness, slow the plate considerably, causing the plate

to cool and thicken even more. A Pacific-sized plate with no thickness restrictions
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becomes frozen at zero plate velocity if its viscosity is & 100 times that of the mantle
(Figure 4.9). This could throw the Earth into the rigid lid convective regime described
by Jaupart and Parsons [1985] and Solomatov [1995]. It is interesting to speculate
that the process that limits oceanic plate thicknesses on Earth, if it exists, could be
the process that enables Earth to convect in a plate tectonic mode instead of a more
Venus-like rigid lid mode. This process is likely to be affected by the temperature
difference between the mantle and lithosphere and the temperature-dependent prop-
erties of the lithosphere, so it may depend on mantle temperature. If it does, a hotter
mantle in the past, or a cooler one in the future, could change the maximum thickness

of oceanic lithosphere and thus alter the plate tectonic style of Earth.

4.10 Conclusions

We have shown that the rheology of the lithosphere is crucially important in control-
ling the dynamics of convection in the mantle. The strength of fault zones and the
effective viscosity of the lithosphere, which is probably affected by both brittle fault-
ing and non-Newtonian viscous flow, are important quantities that control Earth’s
distribution of plate velocities. Thus, as anticipated by Jaupart and Parsons [1985]
and Solomatov [1995], it is the strength of the upper boundary layer to convection
in the mantle that determines the convective pattern of the mantle. We have found
that for Earth it is how easily this upper boundary layer can bend and slide past
neighboring lithosphere as it subducts that determines the mantle’s convective style.

We have shown that at least 60% of the energy associated with the descent of
a subducting slab attached to a long, thick plate is dissipated by the bending of
the slab, and up to 10% more may be dissipated in the fault zone adjacent to the
slab. For shorter, thinner plates, the bending contribution decreases. Because the
subduction zone itself is so crucially important in determining the dynamics of plate
tectonics and mantle convection on Earth, it is essential that subduction zones be
handled carefully in numerical models of mantle convection. It is not clear that the

implementation of convergent plate boundaries using piecewise continuous kinematic
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boundary conditions, low-viscosity boundaries, or even a faulted lithosphere can ac-
curately reproduce the extreme importance of the bending lithosphere in a numerical
model. One solution may be to apply a complicated, high-resolution gridding scheme,
like the one used here in a local study, to a global mantle flow calculation. This would
require intense gridding and computational effort. Alternatively, a more sophisticated
parameterization of subduction zones must be developed that mimics the dissipation

patterns of bending and fault zone shear that occur in real subduction zones.
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