Chapter 3

Convective Instability of

Thickening Mantle Lithosphere

Abstract. Mantle lithosphere, being colder and therefore denser than the under-
lying mantle, is prone to convective instability that can be induced by horizontal
shortening. Numerical experiments on a cold layer with imposed horizontal short-
ening were carried out to examine the relative importance of mechanical thickening,
thermal diffusion, and gravitational instability in deforming the layer. This analysis
is then used to develop a method for determining which of these styles dominates
for a layer thickening at a given rate. If viscosity is non-Newtonian, the imposition
of shortening decreases the lithospheric strength, which causes perturbations to the
lithosphere’s temperature structure to grow exponentially with time. Once these per-
turbations become sufficiently large, they then grow super-exponentially with time,
eventually removing the lithospheric base. Because lithospheric viscosity is highly
temperature-dependent, at most only the lower 30% of the lithosphere participates
in the downwelling associated with this initial super-exponential growth event. After
this event, however, a downwelling develops that removes material advected into the
region of downwelling by horizontal shortening. The magnitude of this persistent
downwelling depends on the rate and duration of shortening. If the total amount of
shortening does not exceed 50% (doubling of crustal thickness), then this downwelling
extends to a depth 3 to 4 times the thickness of undeformed lithosphere and forms a
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sheet significantly thinner than the width of the region undergoing shortening. Once
shortening stops, this downwelling is no longer replenished by the shortening process,
and should then detach due to its inherent gravitational instability. The hottest 60%
of the mantle portion of the lithosphere could be removed in such an event, which
would be followed by an influx of hot, buoyant asthenosphere that causes rapid sur-
face uplift. Because more cold material is removed after the cessation of shortening
than by the initial gravitational instability, the former has a potentially greater in-
fluence on the amount of surface uplift. The Tibetan interior is thought to have been
shortened by about 50% in ~ 30 million years and afterward, at approximately 8 Ma,
experienced a period of rapid uplift that may have resulted from the removal of a

large downwelling “finger” of cold lithosphere generated by shortening.

3.1 Introduction

Thickening of the crust is one consequence of horizontal convergence at the Farth’s
surface and is the main process by which mountains are built. Thickening of mantle
lithosphere may occur as well, and has been proposed as an accompanying process
that may also affect mountain building. In particular, thickening should enhance the
gravitational instability of cold, dense mantle lithosphere with respect to the hot,
buoyant asthenosphere beneath it (Figure 3.1a) [e.g., Fleitout and Froidevauz, 1982;
Houseman, McKenzie and Molnar, 1981]. If the mantle lithosphere becomes suffi-
ciently unstable, localized convective downwelling, of the type described by Howard
[1964], may be initiated at the base of the mantle lithosphere (Figure 3.1b). The sub-
sequent removal of cold lithosphere, and its replacement by hot mantle, could result
in rapid surface uplift followed by extension [e.g., Bird, 1979; England and Houseman,
1989; Neil and Houseman, 1999]. This process is thought to have caused rapid uplift
of the Tibetan plateau 8 million years ago [Harrison et al, 1992; Molnar, England,
and Martinod, 1993], and has been inferred for other mountain belts [Houseman and
Molnar, 1997; Platt and England, 1994; Platt et al., 1998].

The gravitational instability of mantle lithosphere can be enhanced by thickening
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Figure 3.1: Cartoons showing (a) horizontal shortening and thickening of the litho-
sphere, which includes both the crustal layer and the lithosphere’s mantle portion.
Mechanical thickening should enhance the gravitational instability of the cold, dense,
mantle lithosphere with respect to the hot asthenosphere below. If the mantle litho-
sphere is made sufficiently unstable, its lower portion may be removed in a localized
convective downwelling, drawn in (b). Removal of mantle lithosphere and its replace-
ment by hot asthenosphere could result in rapid uplift at the surface. Shown on the
right in both (a) and (b) is output from a numerical experiment that shows the gen-
eration of convective instability by mechanical thickening of a cold, dense layer. Here
arrows represent velocity and show horizontal shortening of the central region in (a)
and a faster flow associated with convective downwelling in (b). Temperature, repre-
sented by shades of gray (colder is darker) and contours (evenly spaced temperature
intervals), clearly shows the removal of the cold layer’s basal portion.
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in several ways. First, thickening increases the amount of dense, potentially unstable
material in a thickened region [e.g., Conrad and Molnar, 1999; Fleitout and Froide-
vauz, 1982; Houseman, McKenzie and Molnar, 1981]. Second, if lithospheric rocks
deform by a nonlinear stress-strain relationship, as they are observed to do in labo-
ratory experiments, the strain-rates associated with shortening should decrease the
background strength of the lithosphere and enhance its gravitational instability [Mol-
nar, Houseman, and Conrad, 1998]. Finally, nonuniform thickening generates large
variations in the lithosphere’s stratified temperature field, allowing gravitational in-
stability to grow from accompanying variations in the density field. If viscosity is
non-Newtonian, the strain-rates associated with the growing instability decrease the
lithosphere’s strength and cause the instability to grow more rapidly. This process
accelerates into a rapid removal of the lithospheric base [e.g., Canright and Morris,
1998; Conrad and Molnar, 1999; Houseman and Molnar, 1997].

These mechanisms of promoting gravitational instability of the lithosphere have
been studied by approximating the convective instability as a Rayleigh-Taylor insta-
bility, in which diffusion of heat is ignored. Thermal diffusion, however, smooths
perturbations to the lithosphere’s stratified temperature field, and thus may retard,
or even prevent, their growth as part of convective instability. Conrad and Molnar
[1999] address this issue by including the stabilizing effects of thermal diffusion for a
generalized density and viscosity structure. These authors, however, study instability
only in layers that are already convectively unstable, and consider horizontal short-
ening only as a mechanism that allows the lithosphere to thicken into an unstable
state. The role of horizontal shortening in making lithosphere unstable is treated
more fully by Molnar, Houseman and Conrad [1998], but their studies do not include
thermal diffusion. Thus, an analysis of the full convective instability for a layer that
is undergoing horizontal shortening is needed.

The numerical experiments described below, which are similar to those exempli-
fied in Figure 3.1, simulate mantle lithosphere that eventually becomes convectively
unstable because it thickens. I compare the deformation that results to the unstable

growth predicted by simpler studies of the Rayleigh-Taylor instability for different
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rheologies [e.g., Conrad and Molnar, 1997; 1999; Houseman and Molnar, 1997], un-
dergoing horizontal shortening [e.g., Molnar, Houseman, and Conrad, 1998], and in
conjunction with thermal diffusion [e.g., Conrad and Molnar, 1999]. The rheologi-
cal conditions and magnitudes of shortening rates that generate the various types of
gravitational instability can then be determined in a general way through the use
a dimensionless scaling analysis, as can the approximate time-dependent behavior
of a growing instability. Finally, I attempt to determine how much material may
be removed by convective instability in a thickening environment, and the effect of
this removal on the remaining lithosphere. As a result, this study treats the full
convective instability of thickening mantle lithosphere more completely than do pre-
vious analyses. Because they build upon previously-developed scaling analyses for
various aspects of the the full problem treated here, these results are comprehensive,
but easily applied to gravitationally unstable layered structures such as the mantle

lithosphere.

3.2 Review of Rates for Unstable Growth

The convective stability of a thickening cold thermal boundary layer can be studied by
observing the behavior of small perturbations to the boundary layer’s stratified tem-
perature field. Various time scales are associated with different mechanisms that pro-
mote the growth or decay of these perturbations. The first growth mechanism is the
shortening process itself, which advects cold material downward as the layer thickens,
and therefore amplifies perturbations to the temperature field [e.g., Bassi and Bonnin,
1988; Fletcher and Hallet, 1983; Ricard and Froidevauz, 1986; Zuber, Parmentier, and
Fletcher, 1986]. Two types of growth are associated with the gravitational instability
of a dense fluid overlying a less dense fluid, also known as a Rayleigh-Taylor instabil-
ity. If the viscosity of the deforming fluid is independent of strain-rate, perturbations
initially grow exponentially with time [e.g., Chandrasekhar, 1961; Conrad and Mol-
nar, 1997; Whitehead and Luther, 1975]. For non-Newtonian viscosity, growth is

super-exponential with time [e.g., Canright and Morris, 1993; Houseman and Mol-
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nar, 1997]. Finally, the lithosphere’s density field is perturbed through temperature,
which is subject to thermal diffusion. Thermal diffusion smooths temperature vari-
ations, and thus diminishes the amplitude of density perturbations, slowing, or even
preventing, their unstable growth [e.g., Rayleigh, 1916].

The complete convective instability of a thickening boundary layer with non-
Newtonian viscosity can thus be ideally described as the simultaneous action of (a)
mechanical thickening, (b) exponential followed by (c¢) super-exponential growth of
perturbations, and (d) thermal diffusion acting to suppress growth. Each mechanism
operates with a characteristic time scale that depends on size of the perturbation itself
and on the physical properties of the layer. In general, one of the four mechanisms
has a dominant influence on the behavior of perturbations because it induces growth
or decay of perturbations at significantly faster rates than do the others. In what
follows, expressions for these growth or decay rates are developed. These expressions
are later used to construct dimensionless parameters that compare the relative im-
portance of the different mechanisms in deforming a given thermal boundary layer

that is undergoing horizontal shortening.

3.2.1 Exponential Growth

If thermal diffusion is ignored, perturbations to an unstable density structure grow
in a manner that can be described by an analysis of the Rayleigh-Taylor instability.
In this analysis, it is useful to describe deformation of a fluid by a strain rate, ¢;,

defined in terms of the components of velocity, u;:

. 1 8u2 au]‘
=3 (axj * 8:1:2') (3:1)

The flow field is incompressible, meaning that ¢; = 0. In a highly viscous fluid,

gravitational body forces are balanced by viscous stresses associated with flow. This

flow, described by the strain rate, is related to the deviatoric stress, 7;;, by:

Tij = 2776” (32)
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The effective viscosity, 1, can vary with temperature and may depend on strain rate:
EG) (3.3)

where B is a rheological parameter, n is a power law exponent, and E? = (1/2) 32, éij
¢;; 1s the second invariant of the strain-rate tensor. Dislocation creep of olivine in the
lithosphere is often described using (3.3) and n about 3.5 [e.g., Kohlstedt, Fvans, and
Mackuwell, 1995].

For Newtonian viscosity (n = 1), = B/2is a constant. In this case, perturbations
to an unstable density structure grow exponentially with time [e.g., Chandrasekhar,
1961; Conrad and Molnar, 1997]. Thus, if Z is the magnitude of a sinusoidal pertur-

bation of wavelength A, and w = dZ/dt is its downward speed, both obey:

dw d7z
7 = aw and = qZ (3.4)

where ¢ is the exponential growth rate.

Conrad and Molnar [1999] nondimensionalize time and length according to:

t = tpg;?;zOhFl and 7 = % (3.5)
where p is the mantle density, « is the thermal expansivity, ¢ is the gravitational
acceleration, Ty is the temperature difference across the layer, i is the thickness
of the unstable layer, and n,, is the Newtonian viscosity at the base of the layer.
The parameter F} is a constant that accounts for the temperature dependence of
viscosity, termed the “available buoyancy” by Conrad and Molnar [1999], who show
that F} is given by the integral through the layer of the thermal buoyancy divided
by the viscosity. Because colder portions of the layer are also stronger, the “available
buoyancy” scaling quantifies the portion of the total buoyancy that is sufficiently
weak to participate in the gravitational downwelling. Thus, the scaling of time given

by (3.5) applies for cold layers with Newtonian viscosity, and arbitrary dependence

of viscosity on temperature.
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Using (3.5) to nondimensionalize (3.4) yields an expression for a dimensionless

growth rate ¢/, which can be related to the dimensional growth rate, ¢, according to:

_ pgaToh
=5

' (3.6)

Using numerical experiments, Conrad and Molnar [1999] measure a maximum value
of ¢" ~ 0.2 for dimensionless wavelengths close to ' = A/h = 4. The combination
of (3.4) and (3.6) provides an estimate of the downward speed at the bottom of a

perturbation growing exponentially with time:

_dZ pgaToh
At 2,

7 (3.7)

w

where the subscript of w; refers to the value of the power-law exponent, n = 1.

If viscosity is non-Newtonian (n > 1), 1, decreases as strain-rates increase, as
shown by (3.3). For a dense layer undergoing horizontal shortening, strain-rates
are associated with both horizontal shortening and unstably growing perturbations.
For sufficiently small perturbation amplitudes, the strain-rates due to shortening are
greater, and thus determine the effective viscosity of the dense layer. As long as
this viscosity remains constant, perturbations grow exponentially with time and with
growth rate given by (3.6), where the viscosity is given by (3.3). Once strain-rates
associated with the growing perturbation begin to dominate those due to shortening,
effective viscosity is affected and growth proceeds super-exponentially, as described
below. Thus, as suggested by Conrad and Molnar [1997] and confirmed by Molnar,
Houseman and Conrad [1998], perturbations may grow exponentially with time even

if viscosity is non-Newtonian, but only if their amplitude is sufficiently small.

3.2.2 Super-Exponential Growth

An increase in the amplitude of a growing perturbation causes an increase in strain-
rates, and thus a decrease in the effective viscosity of a non-Newtonian fluid (n > 1).

This decrease in viscosity causes a density instability to grow super-exponentially with
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time [e.g., Canright and Morris, 1993; Houseman and Molnar, 1997]. By approximat-
ing E ~ w/h, Houseman and Molnar [1997] obtain an expression for the time-varying
viscosity using (3.3). This leads to an expression for the downward speed, w,, of:
d7z CN" [ pmgaTo\"™
SO (B s
where F), is the “available buoyancy,” which depends on n and the depth dependence
of B, B,, is the value of B at the base of the unstable layer, and (' is a dimensionless
measure of the rate of growth [Conrad and Molnar, 1999]. Notice that when n = 1,
(3.8) reduces to (3.7) and C' is equivalent to ¢’. For n = 3, measurements of C for
different dependences of B on T' differ from 0.45 by about 20% [Conrad and Molnar,
1999].
Following Houseman and Molnar [1997], Conrad and Molnar [1999] suggest nondi-

mensionalizing distance and time according to:

Toh\"
"=t (%) F, and 2=z = % (3.9)

where double primes indicate a nondimensionalization of time for super-exponential

growth. Solving for w! in terms of ¢” yields:

w! = [0 (” - 1) (1 — t”)] (s=) (3.10)

which indicates super-exponential growth [Houseman and Molnar, 1997]. Here ] is
the dimensionless time at which speed becomes infinite and the instability must be

detached from the dense layer. By integrating (3.10), Houseman and Molnar [1997]

show:

o (nY 4
o= (2) A5 ou

where Z/ is perturbation’s initial amplitude.

79



3.2.3 Horizontal Shortening

Horizontal shortening of a layer generates thickening and causes the base of the layer

to descend with a speed ws; = dh/dt. Incompressibility requires ¢,, = —¢., = w,/h,
giving;:
dh dws .
Wy =~ = €pah and d—uz = (ppWs (3.12)

A comparison to (3.4) shows that (3.12) is an expression for exponential growth. In
this case, however, it is not the perturbation amplitude Z that grows exponentially
with time, but the thickness of the entire layer h. The “growth rate” in this case is

simply €.

3.2.4 Diffusion of Heat

The cooling of a boundary layer generates the negative buoyancy that drives con-
vective instability. Conductive cooling of a halfspace, appropriate for the cooling of

oceanic lithosphere, yields a temperature profile given by an error function:
T(z)="Ts+ Ty erf(—z/h) where h = 2V/kt. (3.13)

Here ¢, is the time during which the halfspace has cooled [e.g., Turcotte and Schubert,
1982, pp. 163-167] and Ty is the surface temperature. The rate at which an isotherm
at depth h descends can be easily determined by taking the time derivative of h:

dh kK 2K
Wi = = T = (3.14)
where the subscripts d and v denote diffusion in the vertical direction.
Diffusion of heat also smooths, and thus diminishes, the horizontal perturbations
in temperature from which instability must grow [e.g., Conrad and Molnar, 1997;
1999]. Consider perturbations to the background temperature field of the form AT ~

cos(kxz), where AT is the temperature perturbation, & = 27/X is the wavenumber,

and x is horizontal distance. The horizontal temperature field is subject to the heat
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conduction equation:

OAT DPAT

e == 1
ot K( Ox? ) (3:15)

where & the the thermal diffusivity [e.g., Turcotte and Schubert, 1982, p. 154]. Per-

turbations decay exponentially with time as:
—— = —k—AT (3.16)

The wavelength, A, should scale with the thickness of the layer, h. In addition, the
amplitude of a perturbation to an isotherm, Z, should be linearly related to the
amplitude of horizontal temperature variations, AT. Ignoring constants, horizontal

thermal diffusion then generates a characteristic rate of:

d7z KZ
Wih = o ™ T (3.17)

where the negative sign indicates a diminishment of perturbation amplitudes with

time.

3.3 Numerical Experiments

Numerical experiments, similar to those performed by Conrad and Molnar [1999],
can be used to search for the conditions under which each mode of deformation
is dominant. I use the finite element code ConMan, which can solve the coupled
thermal diffusion and incompressible Navier-Stokes equations for high Prandtl number
[King, Raefsky and Hager, 1990]. Convective instability is initiated by imposing a
temperature field as in (3.13). With an assigned thermal expansivity «, colder fluid
is denser and flows downward into the underlying warm fluid as the instability grows.

Perturbing (3.13) by applying:

h(z) = 2/il/1+ peos(2mz/A) (3.18)
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where p is a constant that specifies the perturbation amplitude, initiates unstable
growth. This corresponds to a sinusoidal variation in t., which imposes a smooth
perturbation.

The finite element grid has a depth 8.27h and a width of \'/2 = 2.07h. Per-
turbations with this wavelength grow most rapidly [Conrad and Molnar, 1999], and
thus should reflect the unstable growth that occurs in a system initially perturbed
at all wavelengths. The grid consists of 54 elements in the vertical direction, with 36
elements in the upper half of the box, giving double resolution in the region where the
most of the deformation occurs. Eighteen elements in the horizontal direction make
each element in the upper half of the box square. This resolution is coarser than that
used by Conrad and Molnar [1999], but tests show that measurements of growth rate
are only changed by a few percent.

Horizontal shortening is generated by imposing horizontal velocity boundary con-
ditions along the vertical and top surfaces of the box. Specifically, the left side of
the box has zero horizontal velocity, and a horizontal velocity of —v is imposed along
the right boundary. On both sides, free slip in the vertical direction is permitted.
Along the top surface, the imposed velocity is zero in the vertical direction, and has
a horizontal component that tapers linearly from zero on the left to —v on the right.
These boundary conditions set up a flow that allows the dense surface layer to thicken
according to (3.12), where é,, = 2v/X. Horizontal shortening could also have been im-
plemented by imposing forces, instead of velocities, on the sides of the box. Although
this method more closely resembles lithospheric shortening, which probably involves
external forces acting on strong surface plates, it does not specify the location or the
rate of thickening, making the resulting deformation more difficult to analyze. In this
work, the pattern of shortening is imposed by the velocity boundary conditions, and
an assumption is made that external forces could generate this pattern if present. Fi-
nally, no stress boundary conditions are imposed along the bottom boundary so that
material is not constrained to circulate within the box, which could impede the flow.
The box is sufficiently deep, however, that the sinking boundary layer accelerates to

a terminal velocity before approaching the bottom of the box.
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The imposition of zero vertical velocity at the surface ignores any downward de-
flection of the crust-mantle boundary, which may influence gravitational instability
of the mantle lithosphere. For example, downward motion of the Moho is gravi-
tationally unfavorable, which causes unstable growth below the Moho to be slowed
by any Moho deflection that it creates [Houseman et al., 1999; Neil and Houseman,
1999]. This effect, however, requires a coupling between deflection of the Moho and
convective instability, and thus should be diminished if the cold lithosphere near the
Moho is stronger than the downwelling portion of the mantle lithosphere. As a re-
sult, the stabilizing effects of a crustal layer should be negligible if viscosity is strongly
temperature-dependent, as is considered here. On the other hand, Moho deflection
induced by thickening should increase the rate at which the cold mantle lithosphere
is forced downwards into the hot asthenosphere. This should increase the amplitude
of perturbations, which, for non-Newtonian viscosity, increases the downward speeds
associated with gravitational instability, as shown by (3.8). Thus, deflection of the
Moho by horizontal shortening may promote convective instability.

Viscosity in this analysis is non-Newtonian, as described by (3.3), with a power-law
exponent of n = 3. Following Conrad and Molnar [1999], B varies with temperature

according to:
T — T)
To

B(T) = By, exp(In(r) (3.19)

where the parameter r is the total variation in B across the fluid’s temperature
range, and T, is the temperature of the underlying fluid. Thus, B(7,,) = B, and
B(Ts = T,, — Ty) = rB,. The temperature dependence of viscosity is altered by

varying r.

3.4 A Comparison of Rates for Unstable Growth

A dense layer of non-Newtonian fluid that is undergoing horizontal shortening should
exhibit time-dependent growth or decay of perturbations that can be described pre-
dominantly by one of the above-mentioned modes of deformation. These modes in-

clude exponential and super-exponential growth of perturbations, uniform thickening
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of the layer, and diffusion of heat in the vertical and horizontal directions. Equations
(3.7), (3.8), (3.12), (3.14), and (3.17) provide expressions for wy, ws, ws, wq,, and
wgq n, which are the downward speeds of isotherms near the bottom of an unstable
temperature structure for each of these modes operating independently. In general,
the dominant mode should be the one that causes the isotherms of a layer to move
most rapidly. Because the above speeds depend on the material properties of the
layer, the shortening rate, and the amplitude of the perturbations to the layer’s tem-
perature structure, the dominant mode should also depend on these quantities, and
may change with time as perturbations grow.

In what follows, a series of numerical experiments is used to determine the dom-
inant mode of deformation for various combinations of the relevant parameters. To
apply these experiments generally, dimensionless numbers are constructed by tak-
ing ratios of various combinations of the expressions for speed given above. The
numerically-determined set of parameter values for which a given mechanism de-
forms isotherms most rapidly can then be expressed as ranges of these dimension-
less numbers. Thus, each deformation mechanism is dominating in its own region
of dimensionless parameter space, and the boundaries between these regions define
“critical” values of the dimensionless parameters. To determine the dominant mode
of deformation for any given layer that is undergoing shortening, one needs only to es-
timate values for the dimensionless numbers defined below, and then compare these
values to the measured “critical” values. A summary of the various dimensionless

parameters and their critical values is given in Table 3.1.

3.4.1 Convective Instability: Unstable Growth and Thermal

Diffusion
By studying a layer that is not undergoing horizontal shortening, Conrad and Mol-
nar [1999] determine the basic requirements for convective instability. Their analy-

sis recognizes that horizontal thermal diffusion causes perturbations to an unstable

temperature structure to decrease in amplitude with speed wy ), given by (3.17). If
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viscosity is effectively Newtonian (n = 1), exponential growth causes fluid to move
downward with speed w; given by (3.7). The ratio of these two speeds yields a di-
mensionless number that is proportional to a “Rayleigh” number, analogous to the
Rayleigh number commonly used in thermal convection, and measures the convective

instability of a thermal boundary layer:

(3.20)

where the constant ¢’ is ignored in the definition of Ra;. If viscosity is non-Newtonian
with power law exponent n, the downward speed is given by w,, in (3.8). In this case,

the relevant dimensionless “Rayleigh” number becomes:

. T n h3zn—1 .
Ra, = ('0 %O‘ 0) Fy~ = (3.21)
nB,,

K wdﬁ

Note that if n = 1, Ra, becomes Raj.

Whether perturbations grow unstably or are damped by thermal diffusion depends
on the relative values of w, and wgyy, and thus on the parameter Ra,. A large value
of Ra, means that w, >> wy, and unstable growth should dominate. To determine
the “critical” value of Ra, above which a cold boundary layer becomes convectively
unstable, Conrad and Molnar [1999] measure the downward speed of material with a
temperature of 7" = T'/Ty = 0.9 (near the base of the layer) as a function of time in
a series of numerical experiments similar to those described above, but using €., = 0.
For n = 1, the initial slope of a plot of In w’ versus ¢, made dimensionless using (3.5),
gives the dimensionless exponential growth rate, ¢’. Similarly, if n > 1, a plot of

"=2/3 yversus 1, where time is nondimensionalized according to (3.9), should have a

w
slope of —C'(n — 1)/n, as shown by (3.10). Varying the viscosity 7,,, or the viscosity
coefficient B, if n > 1, allows the growth rates ¢’ or C' to be determined as a function
of Ra; or Ra,,.

Numerical experiments [Conrad and Molnar, 1999] show that for large Ra;, growth

occurs with dimensionless growth rates close to ¢ ~ 0.2. If, however, Ra; < 1000,

measured values of ¢’ are less than 0.2, and for Ra; < 100 they become negative.
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Negative values of ¢’ indicate that perturbation amplitudes are diminished by the
diffusion of heat faster than they can grow. Results are similar for n = 3, where
C' ~ 0.45 for Ras > 1000 and negative for Ra; < 100. Thus, the “critical” value
of Ra, 1s about 100, at least for n = 1 and n = 3. If Ra, > 100, unstable growth

occurs; otherwise, the layer is stable to convection.

3.4.2 Horizontal Shortening and Thermal Diffusion

Now consider a layer of fluid with non-Newtonian viscosity and large B such that
Raz < 100, and that thickens due to an imposed horizontal strain-rate ¢,,. As de-
scribed above and by Conrad and Molnar [1999], such a layer should be convectively
stable, so that any heat transfer must be due either to advection by the imposed
horizontal shortening or to thermal diffusion. Horizontal shortening causes the bot-
tom of a layer to descend with velocity ws, as shown by (3.12). Isotherms also grow
deeper due to cooling from above, at a rate given by (3.14) as wy,. The ratio of these
two rates yields a dimensionless quantity defined here as P because it is similar to a

Peclet number, which compares rates of advective and diffusive heat transport:

€rnh? W,
~

P= (3.22)

K wdw

where the factor of 2 is omitted for simplicity. If P is large, boundary layers thicken
due to horizontal shortening, but if P is small, they thicken by cooling.

The “critical” value of P for which the transition between these two types of
thickening occurs is determined by first measuring the downward velocity, w, of the
T" = 0.9 isotherm as a function of time for many different values of P. Thickening of
the layer by horizontal shortening alone causes dimensionless velocity and time to be

related according to:

n
w

w”’(t”’ — 0) = exXp t/” where t/” - téxx (323)

which is obtained by nondimensionalizing the expression for dw,/dt in (3.12) and
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integrating. According to (3.23), a plot of In(w”) versus ¢ should have a slope of
unity if shortening is dominant. The measured value of this slope is a “growth rate”

" here. It is clear from Figure 3.2

that is nondimensionalized by ¢, and termed ¢
that ¢ ~ 1 for P greater than about 10, which is consistent with uniform thickening.
Because these measurements are for a layer that is convectively stable (Ra, < 100),
thickening alone must dominate for P > 10.

For P less than about 1, ¢ increases with decreasing P (Figure 3.2), which indi-
cates that growth occurs more rapidly than would be expected for a layer experiencing
only mechanical thickening. This is because, for sufficiently small P, horizontal short-
ening is slow enough that isotherms move downward more rapidly due to cooling than
they do because of thickening. Because the velocity of the fluid at the location of a
given isotherm is measured and not the vertical motion of of the isotherm itself, the
measurement of w” is still that of the thickening layer, given by (3.12), where h is the
depth of the given isotherm. This velocity measurement increases with time, however,

n tO

because isotherms move downward due to cooling according to (3.14), causing w
be measured at increasingly larger values of i. In short, cooling causes the sampling
point (a given isotherm) to move to deeper locations within the fluid, locations where

the fluid velocity given by (3.12) is greater. The measured value of the downward

speed thus changes with time according to:

where (3.12) gives dw/0h and (3.14) gives dh/0t. By analogy to (3.4), (3.24) is
an expression for exponential growth with growth rate ¢ = 2x/h*. When made
dimensionless using ¢,,, this growth rate can be simplified to ¢ = 2/ P. This relation
approximates the measured values of ¢/’ for P < 1 (Figure 3.2), meaning that vertical
thermal diffusion dominates in this range.

At small values of P, measured growth rates become negative (Figure 3.2). This

occurs because the layer is convectively stable (Ra; < 100 and Ras < 100), so that

horizontal thermal diffusion causes perturbation amplitudes to decrease with time. If
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Figure 3.2: Plot of the initial dimensionless “growth rate,” ¢ = ¢/é,., as a function

of P, which is varied by varying ¢,,. Here ¢ is determined by measuring the initial

slope of a plot of In(w!’) versus ¢, where time is made dimensionless using " = té,.
Theory predicts that ¢ ~ 1 if the depth of isotherms increases solely because of
horizontal shortening, which is observed for P > 10. If isotherms deepen due to
cooling from above, theory predicts ¢ ~ 2/P, which is observed for P < 1 (thin
solid line). At sufficiently small P, ¢ < 0 because horizontal thermal diffusion
causes perturbations to decrease in amplitude faster than shortening thickens the
layer. Growth rates are calculated as described in the text for a set of parameters
that yield Ras = 26000Z(’)2 F5. The maximum value of Ras is then 0.7 for Z) = 9.54%
and r = 10. The maximum value of Ra; is 0.7 for this same curve at P ~ 10%. Thus,
measured growth rates should only be affected by horizontal shortening and thermal
diffusion because both KRa; and Ras are below their critical values for convective

instability.
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horizontal strain-rates, expressed by P, are sufficiently small, this leads to negative
measurements of the growth rate, as Conrad and Molnar [1999] found for convective

instability.

3.4.3 Convective Instability and Horizontal Shortening

A layer undergoing horizontal shortening may also deform due to gravitational in-
stability. If Ras > 100, perturbations grow super-exponentially with time, at least
after the effective viscosity is governed by strain-rates associated with the growing
instability. If background strain-rates are larger than those induced by the instability,
however, horizontal shortening induces a background Newtonian viscosity given by
(3.3) that should promote initially exponential growth [Molnar, Houseman and Con-
rad, 1998]. For still larger imposed strain-rates, uniform thickening may overwhelm
either the exponential or super-exponential growth associated with gravitational in-
stability.

A transition from super-exponential to exponential growth of perturbations is
thus expected at some imposed background strain-rate. The downward speed of a
perturbation growing super-exponentially is given by (3.8) if n = 3 and should be
independent of ¢,,. The downward speed associated with exponential growth is given
by (3.7) and increases with ¢2/3 because the effective viscosity given by (3.3) for n = 3

—-2/3

is proportional to €.2/°. The ratio of these two speeds is proportional to the ratio

Ray/Ras and is given by:

2
Ray (3B B m (3.25)
Ras pgaloZ | F5 ™ ws ’

Thus, large values of ¢,, create large Raj/Ras, which favors exponential growth.
Conversely, if €., is small, perturbations should grow super-exponentially.

Both types of growth can be demonstrated by plotting In(w’), where w’ is the di-
mensionless downward speed of the T" = 0.9 isotherm, as a function of the dimension-
less time, ¢'. As discussed above, if growth is exponential, this curve should be linear,

with slope equal to the dimensionless exponential growth rate, ¢'. For Ra;/Raz = 10
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the approximately linear initial relationship between In(w’) and t', with an initial
slope of 0.19 (Figure 3.3), agrees with measurements of ¢’ ~ 0.2 made by Conrad
and Molnar [1999] for Newtonian viscosity if Ra; > 100. Thus, for Ra;/Raz = 10, a
perturbation initial grows exponentially with time. Later, the slope of this curve in
Figure 3.3 increases, presumably because super-exponential growth begins to become
important.

For Ray/Ras = 1, a plot of In(w') versus t' does not include an initial linear
segment, but instead the slope rapidly increases with time (Figure 3.3). Growth
in this case is super-exponential and the slope of a tangent to the curve of In(w’)
versus 1 gives a measurement of the “instantaneous” growth rate at a given time.
The above theory predicts the value of this growth rate for a given perturbation
amplitude. Taking the time derivative of (3.8), nondimensionalizing using the time
scale for exponential growth in (3.5), and then simplifying using the definitions of

Ray and Ra,, in (3.20) and (3.21) yields:

dw! Ra,, ,
e — e ‘2
p nC Ra, w, (3.26)

Thus, the initial “instantaneous” slope of a plot of In(w’) versus ¢', denoted here as
qh, should be equal to nC"Ra, /Ra;. For Rai/Rasz = 1, a measurement of this initial
slope using the first few data points gives ¢ = 0.45 (Figure 3.3). This is larger than
the predicted value of nC"™Ra,,/Ra; = 0.27, calculated using C' = 0.45 [Conrad and
Molnar, 1999], by nearly a factor of two. It is difficult, however, to fit a tangent to a
set of points that are not linear, so perhaps an exact match to the theory should not
be expected.

The transition from super-exponential to exponential growth can now be found
by observing how measurements of ¢ depend on Ra;/Ras (Figure 3.4). For large
Ray/Ras and exponential growth, the measured initial slope should be constant and
equal to ¢, ~ 0.2 (Figure 3.4) [Conrad and Molnar, 1999]. Although these mea-
surements depend somewhat on perturbation size and begin to increase with increas-

ing strain-rate for Ra;/Ras > 100, measured values of ¢, ~ 0.2 are evident for
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Figure 3.3: Plot of Inw’, where w’ is the downward speed of the T' = 0.9 isotherm,
versus t' (nondimensionalized using (3.5) for exponential growth). Shown are curves
for two choices of Ray/Ras and for r = 100 and Z) = 9.54%. Theory predicts that if

growth is exponential, these curves should be linear, with slope equal to the dimen-

sionless growth rate, ¢’. For Ra;/Ras = 10, the initially linear relationship indicates

exponential growth with ¢ close to 0.2, the value expected for exponential growth
[Conrad and Molnar, 1999]. Not even the initial part of the curve for Ra;/Ras = 1,
however, is linear, but instead the “instantaneous” growth rate, as measured by the
slope of a tangent to the curve at a given time, increases with time. This behavior is

consistent with super-exponential growth of perturbations. The initial value of this

“instantaneous” growth rate is estimated by measuring the average slope through
the ZHd, 3rd7 and 40 data points. Because the initial slope changes rapidly with
time, an accurate estimate of ¢ is difficult to make for super-exponential growth.

By consistently measuring the slope in the same way, however, the variation of this
initial “instantaneous” growth rate as a function of Ra;/Raz can be observed. This

is shown in Figure 3.4, where the two growth rates measured here are marked.

91



2 < Rai/Raz < 100. For small Ra;/Ras, super-exponential growth should dominate
even in initial stages. Indeed, for Ra;/Ras < 2 the measurements of ¢ follow the
curve for nC"Ra, /Ray (Figure 3.4), as predicted by (3.26). These measured values
are systematically larger, by about a factor of two, than the predicted values, as found
for a single example in Figure 3.3, and can be attributed to the difficulty of measuring
the true initial slope. The change in the dependence of ¢} on Ra;/Ras in Figure 3.4 in-
dicates that the transition between super-exponential and exponential growth occurs
for Ray/Ras ~ 2. This value is independent of 7} and the temperature-dependence
of B (Figure 3.4).

At sufficiently rapid background strain-rates, uniform thickening of the layer oc-
curs faster than the gravitational instability grows. Thus, another transition, this
one from exponential growth to uniform thickening, should occur as strain-rates in-
crease. Again, this transition can be found by first taking the ratio of the speeds for

mechanical thickening, ws, and exponential growth, w;, which can be simplified to:

wh Ra1 ’
—~ —, 3.27
w, P 0 ( )

This ratio depends on the perturbation size Z) because the only important dimension
affecting w; in (3.12) is the layer thickness, but w; also increases with the size of the
perturbation, as in (3.7). Thus, layers perturbed with different amplitudes should
experience a transition from exponential growth to thickening at different values of
Ray/P.

To see where thickening becomes important, measurements of ¢, the “instanta-
neous” initial growth rate discussed above, are plotted a function of Z]Ra;/P (Fig-
ure 3.5). If shortening is the most important growth mechanism, the downward speed
at the base of a layer is given by w;, in (3.12). Taking the time derivative of (3.12),
nondimensionalizing using (3.5), and simplifying using the definitions of Ra; and P

in (3.20) and (3.22) yields:

dw, P (3.28)
dt’ N Ra1 W '

Thus, if the layer grows only by thickening, ¢, = P/Ra;. Measured values of ¢
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Figure 3.4: Plot of the initial dimensionless growth rate, ¢j, as a function of Ra;/Ras.
Here ¢{ is measured as shown in Figure 3.3 and where time is made dimensionless using

(3.5). The smallest value of Ras is 770 for the 7 = 4.88% and r = 1000 curve, mean-
ing that the layer is always potentially unstable to super-exponential growth. This

type of growth is observed for small strain-rates that produce Ra;/Ras < 2, where
theory (see text) predicts super-exponential growth with initially ¢} = nC" Ras/Ra;
(thin solid line). For Rai/Ras > 2, g ~ 0.2, as predicted for exponential growth.
Thus, for strain-rates that are large enough to produce Ra;/Raz > 2, the background
viscosity of the layer is reduced sufficiently so that density perturbations grow unsta-
bly and exponentially with time. The large gray stars correspond to measurements

made in Figure 3.3.
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behave in this way for ZjRa,/P < 0.5 (Figure 3.5), for the three different initial
perturbation amplitudes. For Z/Ra,/P > 0.5, measured growth rates trend toward
g ~ 0.2. For small initial perturbations such as Z) = 0.01, growth rates may be
smaller than ¢’ ~ 0.2 even for ZjRa,/P > 0.5 (Figure 3.5), indicating that horizontal
shortening still influences growth.

The transition between exponential and super-exponential growth, determined
from Figure 3.4 to occur at Ra;/Ras ~ 2, can also be represented in terms of 7 Ray/ P
and observed in Figure 3.5. By solving for the strain-rate at which Ra;/Raz ~ 2
and inserting this expression into the definition of Z)Ra;/P given in Table 3.1, it is
possible to rewrite Ray/Ras ~ 2 as Z\Ray/P ~ 3.67F1\/m. Using the values
of Fy and Fj5 given by Conrad and Molnar [1999], the transition from exponential to
super-exponential growth can be estimated to occur at Z Ray/P ~ 5. This transition
is evident Figure 3.5, and is, coincidentally, nearly independent of the temperature

dependence of B across the layer.

3.4.4 Summary

Three dimensionless quantities, Ra;, Ra,, and P, together with the initial dimen-
sionless perturbation size, Z), can be used to determine the mode of deformation
that occurs in a cold thickening boundary layer with non-Newtonian viscosity and
power-law exponent n = 3 (Table 3.1). If Ras > 100, the instability may grow
super-exponentially, but only if imposed strain-rates, €,,, are small enough that
Ray/Ras < 2 (Figure 3.4), or alternatively Z Ra;/P > 5 (Figure 3.5). If the im-
posed strain rate is large enough that Z Ra;/P < 0.5 (Figure 3.5), or alternatively
Ray/Ras > 100 (Figure 3.4), mechanical thickening of the layer dominates the down-
ward advection of isotherms (Figure 3.5). Intermediate imposed strain-rates lead to

exponential growth of perturbations, as long as Ra; > 100.
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Figure 3.5: Plot of the initial dimensionless growth rate, ¢, made dimensionless
using (3.5), as a function of ZjRa;i/P. The results for which Z Ra;/P > 5 are the
same as those for which Ra;/Rasz < 2 in Figure 3.4, where they are attributed to
super-exponential growth. Theory predicts (see text) that if growth is controlled by
horizontal shortening, g5 = P/Ray. This is observed for ZjRa,/P < 0.5 (compare
to thin solid lines). For 0.5 < Z[Ra;/P < 5, a mixture of horizontal shortening
and exponential growth causes growth rates to increase toward ¢j = 0.2, the value
expected for exponential growth. The large gray star corresponds to a measurement
made in Figure 3.6.
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Table 3.1. Summary of Dimensionless Quantities (for n = 3)

Description of Dimensionless Quantity

Critical Values and Dominant Mode of Growth

_ pgaToh?®

RCLl == F1é2/3

kB, re

Compares exponential growth
and thermal diffusion

g To\> h3 72
Pmgo 0> P

3B,

Compares super-exponential
growth and thermal diffusion

Ragz(

R

€rah?

K

P:

Compares mechanical thickening
and thickening due to cooling

Ray _ (38 Y
fa _ .
Ra3 ngzTOZ F3 e

Compares exponential growth
and super-exponential growth

Ray  pgodoh .y
S _ e /3
P kB, 1

Compares exponential growth
and mechanical thickening

Z/

Ray > 100 Exponential Growth

Ra; <100 No Growth

Ras > 100 Super-Exponential Growth
Ras <100 No Growth

Applies if Ray < 100 and Raz < 100

P>1
P <1

Mechanical Thickening
Thickening due to Cooling

Applies if Ra; > 100 or Raz > 100

R
! <2 Super-Exponential Growth
RCL3
Rdl .
2 < — < 100 Exponential Growth
Ra3
Rcm . . .
—— > 100 Mechanical Thickening
RCL3

Applies if Ray > 100 or Raz > 100
Ra1

Z'? < 0.5 Mechanical Thickening
R
0.5 < Z’% <5 Exponential Growth
Z’% > 5 Super-Exponential Growth
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3.5 Transitions Between Mechanisms of Instabil-
ity

The dimensionless quantities Ray, Ras, and P depend on the layer thickness h, and
thus increase as the layer thickens with time. The measure of instability Ras also
increases as gravitational instability grows because it depends on the perturbation
amplitude Z. As a result, an unstable layer should experience transitions between
different types of deformation as increases in h and Z cause Ray, Ras, and P to
encounter the “critical” values described above and in Table 3.1.

As an example, consider convective instability at the base of a layer perturbed
initially with amplitude 7’ = 4.88%, r = 100, and choices of ¢,, and other parameters
such that Z'Ra; /P ~ 0.7. As noted in Figure 3.5 and shown by a plot of In(w’) versus
t" (Figure 3.6a), such a layer undergoes a combination of Rayleigh-Taylor growth
and horizontal shortening such that ¢ = 0.12, where time is made dimensionless
using (3.5). This value is smaller than the value of ¢’ ~ 0.2 appropriate for purely
exponential growth. As discussed above and shown in Figure 3.5, however, ¢ < 0.2
for initial perturbation amplitudes that are sufficiently small because shortening still
influences growth. Thus, in the example shown in Figure 3.6a, isotherms are initially
advected downward in part by uniform thickening of the layer.

As the perturbation amplitude 7’ increases with time due to Rayleigh-Taylor
growth, the quantity Z'Ra;/P also increases, making deformation of the layer less
influenced by mechanical thickening (Figure 3.5). In fact, transition to exponential
growth occurs as the perturbation amplitude nears Z’ ~ 10% and Z’'Ra; /P nears 1.4
(Figure 3.6b), seen also in the change in slope near t' = 2 (Figure 3.6a). The new
measured growth rate of ¢ = 0.26 is larger than expected for exponential growth.
Because the layer has thickened by about 30% before exponential growth becomes
dominant, however, the thickness h used in (3.5) to make time dimensionless should
be increased by a factor of 1.3, making the value of 0.26 consistent with the predicted
dimensionless growth rate of ¢' = 0.2 [Conrad and Molnar, 1999], and that observed
in Figure 3.5 for 7' = 10% and Z'Ra,/P ~ 1.4.
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Figure 3.6: Plot of (a) Inw’ as a function of time (made dimensionless using the time
scale for exponential growth in (3.5)) for a layer with initial values of Ray, Ras, and
P of 800, 10, and 50, respectively, and for r = 100 and 7} = 4.88%. The time varia-
tion of the dimensionless perturbation amplitude Z’ and the dimensionless parameter
Z'Ray/P is shown by (b). The linear trends in (a) show that growth is initially
exponential, with growth rate ¢’ = 0.12, until Z'Ra;/P ~ 1.4, at which point the
dimensionless growth rate increases to ¢’ = 0.26. The slower initial growth can be at-
tributed to the influence of the thickening rate, which initially moves isotherms down-
ward faster than does exponential growth. When perturbations become sufficiently
large (7' ~ 10%), exponential growth becomes fastest. Finally, super-exponential
growth occurs for Z'Ray /P > 5. The transition between the various types of growth
is approximately predicted by the changes in slopes in Figure 3.5, where the initial
growth rate measurement of this calculation is marked.
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Figure 3.7: Plots of (a) w"(=%/%) and (b) the dimensionless parameter Ra,/Ras, de-
fined by (3.25), as a function of time (made dimensionless using the time scale for
super-exponential growth in (3.9)) for the instability described in Figure 3.6. The
linear behavior for ¢ > 840 indicates super-exponential growth with growth param-
eter C' = 0.29. This occurs when perturbation amplitudes become large enough that
Ray/Ras decreases below about 2, as shown in (b) and predicted in Figure 3.4. The
line marking the approximate transition in behavior is the same as the one marked
in Figure 3.6 for a different dimensionless time.
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When perturbation amplitudes become sufficiently large that Ras > 100 and
Ray/Ras < 2 (or if Z'Ray/P > 5), super-exponential growth of perturbations is
faster than exponential growth. In Figure 3.6, where time is nondimensionalized
using the time scale for exponential growth given by (3.5), growth becomes faster than
exponential for ¢ > 6, the time at which Z'Ra;/P ~ 5 (Figure 3.6b), consistent with
the transition in Figure 3.5. This same time is marked in Figure 3.7 at ¢ ~ 840, where
time is nondimensionalized using the time scale for super-exponential growth given by
(3.9). For t” > 840, the plot of w”(=2/%) versus ¢" is approximately linear, with slope
indicating a growth parameter of C' = 0.29 (Figure 3.7a). This transition to super-
exponential growth occurs when Ra;/Ras becomes less than about 2 (Figure 3.7b),
the critical value of this ratio in Figure 3.4. The measured value of C' = 0.29 is
smaller than the value of C' ~ 0.4 measured by Conrad and Molnar [1999]. This
discrepancy is exacerbated by the fact that the layer has thickened by about 70%
when super-exponential growth begins, meaning that this measured value should
be reduced further by a factor of (1.7)/® = 1.2, as determined by the relationship
between h and C in (3.8). Conrad and Molnar [1999], however, measured C' using
an initial perturbation amplitude only 10% of h. Here super-exponential growth is
measured from a layer that has been previously distorted at large amplitudes by both
thickening and exponential growth. If the resulting perturbation structure is not
optimal for growth, these perturbations might grow more slowly than those measured
by Conrad and Molnar [1999].

For a thickening unstable layer, the dominant mode of deformation progresses
from exponentially increasing mechanical thickening, to faster exponential growth of
a gravitational instability, and finally to still faster super-exponential growth of this
instability. Depending on initial conditions, these three types of deformation will
evolve from one to the next as the layer thickens and perturbations grow. The scaling
analysis developed above for an initially perturbed layer can be used to predict the
approximate time-dependent evolution of a thickening unstable layer that experiences

transitions between different styles of thickening and growth as it evolves.
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3.6 The Evolving Thermal State of an Unstable
Layer

If mechanical thickening of mantle lithosphere generates convective instability, the
lithosphere’s low viscosity basal portion will be removed in an event whose time de-
pendence is described above. The colder, more viscous shallow lithosphere may also
be unstable, but on time scales longer than those that apply to the initial lower litho-
sphere instability [Molnar, Houseman and Conrad, 1998]. Thus, convective erosion
at the lithospheric base should continue at progressively slower rates until the layer
is thin enough to be convectively stable, as defined by Ras < 100. Complete convec-
tive stability, however, is not likely to be achieved for billions of years following an
initial instability [Conrad and Molnar, 1999], perhaps making stability geologically
unimportant. Instead, the actual amount of material removed by convective instabil-
ity and the subsequent convective erosion depends on the time scale relevant to the
geologic process that is being studied.

Previous studies of convective instability [e.g., Conrad and Molnar, 1999; Molnar,
Houseman and Conrad, 1998] extrapolate the analysis for a single downwelling insta-
bility to the ongoing convective erosion of a layer afterwards. As a result, they do not
account for the ongoing thermal evolution of the layer due to heating by the influx
of hot asthenosphere from below, or additional cooling from above. In addition, they
ignore the possible role that ongoing horizontal shortening may play in continuing
to thicken the layer. To study the evolution of mantle lithosphere after its base is
convectively removed, calculations similar to those described above are extended for

times beyond this initial event.

3.6.1 Additional Numerical Calculations

In the lithosphere, shortening, and therefore convective instability caused by short-
ening, occurs at convergent zones between large plates of nearly constant thickness.

To consider durations of convergence long enough to allow large finite shortening, I
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extend the width of the finite element grid to 6.20h, three times that used in the
calculations above. The wider grid allows the instability to occur farther from the
right edge where imposed boundary conditions generate shortening, and thus should
diminish the influence of these boundary conditions on the evolution of the shortening
region after the instability occurs. Shortening is permitted only in the left one-third
of the grid by adding uniform velocity boundary conditions to the top surface of the
rightmost two-thirds of the grid. Thus, at the surface, the horizontal velocity tapers
unformly from zero to —v on 0 < 2’ < 2.07 and is equal to —v on 2.07 < 2’ < 6.20.
The other boundary conditions are the same as those used above.

The imposed horizontal shortening causes the unstable layer to thicken at a rate
that can be expressed by P using (3.22) as a multiple of the thermal diffusion time
scale. Perhaps a more meaningful expression for the thickening rate is the time for
a layer’s thickness to increase by 100%. In these calculations, a doubling of layer
thickness can be achieved by collapsing a region of width 27 into a region of width
L, which corresponds to horizontal shortening of 50%. If L is the width of the
shortening region and material is brought into this region with velocity v, then the
horizontal strain-rate is ¢,, = v/L and 100% thickening is achieved after a time

tioo = L/v =1/éz,. Using (3.22), t100 can be written in terms of P:

h2
t = — = —
00 . Pk

(3.29)

Later, it will be useful to make time nondimensional using the time scale for expo-

nential growth. Applying (3.5) and simplifying yields:

Voo = —— 3.30
100 p ( )

Values for P and Ray are given below so that ¢}, can be calculated using (3.30).
Sixteen calculations are performed, for four different temperature dependences of
viscosity, given by values of r of 1, 10, 100, and 1000, and for four different shortening
rates, which yield values of P of 1.5, 4.8, 15, and 48. Because the stability parameter
Ray depends on strain-rate, as shown by (3.20) and (3.3), layers with larger values
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of P, and thus larger strain-rates, have larger Ra;, making them convectively more
unstable. To study layers that are inherently stable when subject to low shortening
rates, but that become unstable when shortening rates increase, the strength param-
eter B, is chosen so that a layer shortening with P = 4.8 has a value of Ra; near the
critical value of 100. Because layers with larger r, and therefore smaller “available
buoyancy” parameter Fi, have a diminished tendency toward convective instability
(as shown by (3.20)), the chosen values of B,, are smaller for layers with larger r.
Thus, despite differences in r, layers are equally unstable at a given shortening rate.
The stability parameter Ray is thus varied only by changing the shortening rate,
which is specified here by a change in P.

Because horizontal shortening is only imposed between 2/ = 0 and 2.07, thickening
in this region generates a perturbation to the initially unperturbed error-function tem-
perature profile. This perturbation then should grow unstably, either exponentially
with time if shortening is sufficiently rapid that Ra; > 100, or super-exponentially
with time once this perturbation becomes large enough that Raz > 100. Either way,
localized thickening eventually leads to a perturbation that grows unstably. This
initial downwelling eventually removes the basal portion of the layer, as shown for
r = 100 by the locations of isotherms in Figure 3.8 (black lines). Typically, down-
welling persists following the initial removal event, and continues to remove cold
material from both the upper reaches of the surface layer, as well as new material
that is brought in from the side. This downwelling appears to be a permanent feature
and eventually reaches a steady state in which it removes all new cold material that

is brought in by the imposed horizontal shortening (Figure 3.8, grey lines).

3.6.2 The Evolution of Downwelling

To study the instability’s development over time, I record the locations and downward
speeds of the nine isotherms between 77 = 0.1 and 7" = 0.9 on left side of the box,
where the instability is a maximum. I also record the depth of these isotherms as they
are advected into the right-hand side of the box. The amplitude of the perturbation

to each isotherm, 7', can be measured by taking the difference in an isotherm’s depth
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Figure 3.8: Profiles of temperature for a convective instability growing from a thick-
ening thermal boundary layer with temperature-dependent, non-Newtonian viscosity
for which n = 3 and r = 100. Only the left half and the upper 60% of the entire
finite element calculation is shown. Growth is initiated by imposing velocity bound-
ary conditions on an initially unperturbed error function temperature profile. These
boundary conditions generate horizontal shortening between 2/ = 0 and 2’ = 2.06,
as described in the text. Thus, the layer thickens in this region, which generates a
lateral variation in the temperature field from which convective instability can grow.
Shown are isotherms for 7" = 0.1 through 0.9, with colder temperatures closer to the
surface. Sets of isotherms for different shortening rates are shown in parts (a) through
(d), where the difference in shortening rates is parameterized by P, but also affects
Ray by changing the background viscosity of the layer. In each case, two times are
shown, where time is nondimensionalized using the time scale for exponential growth
given by (3.5). The dark contours show a time during the super-exponential phase
of the instability, in which a “blob” of material is rapidly descending into the lower
halfspace. The light contours show the instability at the end of the calculation, when
cold material is flowing downward from the base of the instability at a nearly steady
rate.

between the left and right hand sides of the grid, and then normalizing this quantity
by the original depth of that isotherm. To determine the fraction of the downward
speed that is not due to the initially-imposed velocity field associated with horizontal
shortening, the initial speed of material containing a given isotherm is subtracted
from its measured value. Because the layers are initially unperturbed, this initial

speed should result almost entirely from horizontal shortening. The velocity that

/

L. here, must be associated with either gravitational instability

remains, termed w
or the acceleration of mechanical thickening beyond its initial rate (remember that
ws in (3.12) grows exponentially with time).

A comparison of the expressions for w; and w, in (3.7) and (3.8), shows that if
gravitational instability dominates, a plot of In(w?,,,.) versus In(Z’) should yield a lin-
ear relationship with slope equal to the power-law exponent, n, that depends on the
style of growth: n =1 for exponential and n > 1 for super-exponential growth [Mol-

nar, Houseman and Conrad, 1998]. If mechanical thickening dominates, subtracting

the initial velocity from (3.12) yields weor, = €z.7Z if h(t) = h(t = 0) + Z(¢). This
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relation should, like exponential growth, yield a slope of unity in a plot of In(w’,,,)
versus In(Z’). Such a plot (Figure 3.9) shows a slope near unity for the coldest
isotherms, indicating exponential growth of perturbations or mechanical thickening
throughout. For the hotter isotherms, a change in slopes indicates a transition to
super-exponential growth of perturbations (slope of m = n = 3). For all of the calcu-
lations shown in Figure 3.9, the dimensionless quantity Z'Ra;/P > 0.5 for Z' > 6%
(In(Z") > —2.8 in Figure 3.9). This implies that exponential growth (rather than
horizontal shortening) dominates prior to the transition to super-exponential growth,
at least for the hotter isotherms. Following this period of super-exponential growth,
curves for the hotter isotherms begin to oscillate due to an interaction with the base
of the finite element grid (Figure 3.9), indicating that these isotherms have detached
from the cold surface layer.

Thus, growth for the hotter isotherms is initially exponential, but that soon be-
comes super-exponential and eventually leads to the removal of the basal portion
of the layer. The time for this removal to occur once the super-exponential growth
phase begins can be estimated using (3.11), where time is nondimensionalized using
(3.9) for super-exponential growth. Changing this nondimensionalization to that of

exponential growth using (3.5) yields:

1 Ra1
T 31
*7 (n—1)C" Ra, (3:31)

If n = 3, super-exponential growth begins when Ra;/Ras ~ 2. Using this value and
C' = 0.45, the time to the initial removal event can be estimated as ¢, ~ 11, and is
independent of shortening rate. This is comparable to the times shown in Figure 3.8
for the initial instability to become large (times associated with black curves), but
allows no time for the development of perturbations prior to the initiation of super-
exponential growth. The estimates of Rai/Raz = 2 and €' = 0.45 are, however,
approximate. Ifinstead Ra;/Raz ~ 1.5 is appropriate, as it seems to be in Figure 3.7b,
t, ~ 8, a value that is nearly as large as the times shown in Figure 3.8. Thus, the

initial removal event consists primarily of a super-exponential growth phase, but is
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Figure 3.9: A plot of In(w!,,,) as a function of In(Z’) for each of the nine isotherms
(solid lines, 7" = 0.1 through 0.9) and for the four calculations shown in Figure 3.8
(parts (a) through (d)). The colder isotherms have smaller initial velocities. Here
wh,.. = w —w(t =0) and Z' are measured as described in the text. As shown
by taking the natural log of the expression for exponential growth of gravitational
instability in (3.7) or the corrected expression for horizontal shortening (see text), a
slope of m = 1 indicates that one of these two modes is dominant. By taking the
natural log of equation (3.8), a slope of m = 3 indicates super-exponential growth for
power-law creep with exponent n = 3. Dashed lines with slopes of 1 and 3 are shown
for comparison. Initially, all of the isotherms experience either exponential growth of
gravitational instability or mechanical thickening (slope of 1). Eventually, the hotter
isotherms are removed by an event in which perturbations grow super-exponentially
with time (slope of 3). These isotherms later cease their growth because they fall

through the bottom of the box and begin a period of oscillatory behavior.
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preceded by a brief exponential growth phase, and perhaps an even briefer horizontal
shortening phase. Because the dimensionless duration of super-exponential growth
is independent of the shortening rate, the slightly shorter times for faster shortening
rate (larger P in Figure 3.8) can be attributed to the dependence of the exponential
growth phase’s duration on shortening rate. If shortening is faster, less time is spent
in the generation of perturbations large enough to produce Ras > 100, the condition

for initiation of super-exponential growth.

3.6.3 The Thermal State After Initial Instability

The amount of material removed by the initial instability can be estimated by observ-
ing the number of isotherms that participate in the initial downwelling in Figure 3.8.
For example, the bottom three isotherms are clearly involved in the downwelling for
the slowest shortening rate (Figure 3.8a). A fourth isotherm appears to join the in-
stability for faster shortening (Figure 3.8d). Another way of determining how much
material is initially removed is to estimate how many isotherms change their slopes
from m =1 to m = 3 in Figure 3.9. It is clear that the colder isotherms (smaller
w') do not change slope, except for a small, temporary, acceleration that occurs when
the hotter isotherms begin their super-exponential phase. In each of the four cases
shown in Figure 3.9, the hotter four isotherms change their slope significantly, while
perturbations to the colder five isotherms continue with slopes near unity. The initial
removal event is also evident in a plot of the depth of each isotherm as a function of
time (Figure 3.10), and it is clear that between three and four isotherms are removed
by it.

A more quantitative estimate of the amount of material removed by the initial
instability can be obtained by examining the distribution of isotherms at the removal
time in Figure 3.10. In particular, the ratio of each isotherm’s depth at a given time
to its initial depth defines a “thickening factor” that can then be used to compare
the relative deflections of different isotherms at various times. At the removal time,
defined here to be the time in which the 7" = 0.9 isotherm first encounters the bottom

boundary of the finite element grid, isotherms are typically separated into two groups.
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Figure 3.10: A plot showing the depth of each of the nine isotherms (7" = 0.1
through 0.9, where the colder isotherms are closer to the surface), as a function of
time (made dimensionless using the time scale for exponential growth in (3.5)) for the
four calculations shown in Figure 3.8 (parts (a) through (d)). In each case, the super-
exponential growth phase is evident as the bottom isotherms plunge deeply into the
lower halfspace, eventually descending through the base of the grid at z/ = 8.27. These
isotherms then begin a period of oscillatory behavior while the shallower isotherms
continue to be drawn downwards. Also shown for each case is the dimensionless
time at which the layer would have thickened by 100% in the absence of convective
instability. This time corresponds to 50% shortening at the surface and is given by

(3.30) as tyyq = Ray/P.
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Figure 3.11: A plot showing, as a function of shortening rate (expressed by P) and the
temperature dependence of viscosity (expressed by r), the dimensionless temperature
of the coldest material removed by the first, super-exponential growth removal event.
This temperature is defined as that of material that deepens to a depth 5 times
greater than its original (unperturbed) depth at the time of the initial instability. It
is evident that a greater portion of the layer is initially removed if viscosity is only
weakly temperature-dependent (smaller r) and that the shortening rate has little
effect on the amount of material removed in this initial event.

Colder isotherms subside steadily with time (Figure 3.10) and typically deepen by
a factor less than about 3 by the time of the removal event. Hotter isotherms that
actively participate in this event penetrate deeply into the box, which causes them
to grow deeper by factors greater than about 7, a quantity limited by the box depth
(Figure 3.10). The isotherm that delineates the boundary between these two types
of behavior can be defined as the temperature of material for which an arbitrarily
chosen thickening factor of 5 applies (Figure 3.11). The factor of 5 is midway between
the values of 7 and 3 estimated for isotherm “removal” and “nonremoval,” but tests
show that choosing 4 or 6 gives similar results.

The approximate temperature of the coldest material that participates in the ini-
tial removal event is shown in Figure 3.11. For example, the T" ~ 0.7 isotherm is

removed for r = 100, with slightly colder material being removed at higher short-
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ening rates (Figure 3.11). This estimate is supported by comparing the deflection
of the T ~ 0.7 isotherm to that of the other isotherms in Figure 3.10. The cutoff
temperature for removal (Figure 3.11) is highly dependent on the temperature depen-
dence of viscosity coefficient, r, with nearly the entire layer being initially removed
in the constant B case (r = 1), and only the bottom few isotherms being removed
if » = 1000. As found above for r = 100, the amount of material removed in this
initial removal event does not depend strongly on the rate of shortening. This is due
to the domination of the initial removal event by super-exponential growth, which,
unlike exponential growth, does not depend on the shortening rate. Thus, the short-
ening rate should not affect the amount of material removed in this initial instability,

provided this rate is large enough to generate instability.

3.6.4 The Thermal State After Prolonged Thickening

Because these calculations extend beyond the initial instability, they can be used to
examine deformation of the unstable layer after the initial removal event. As the
initial downwelling passes through the base of the finite element grid, the negative
thermal buoyancy associated with the downwelling isotherms is suddenly removed,
which causes these isotherms to retreat rapidly. This response is typically followed
by another advance of downwelling, and oscillatory behavior develops (Figure 3.10)
until it is damped into a steady state downwelling flow (Figure 3.8). Several colder
isotherms that do not participate in the initial removal event are eventually drawn
into this later downwelling flow (Figure 3.8). The slope of m ~ 1 in Figure 3.9
indicates that they descend either by exponential growth of gravitational instability
or by continued mechanical thickening.

A layer’s tendency toward exponential growth of gravitational instability is mea-
sured by Ray, which, because it depends on the layer’s background viscosity, and thus
its background shortening rate, increases with P. Thus, faster shortening rates cause
both P and Ra; to increase (remember that, for a given value of r, Ray is changed
only by varying the shortening rate). Thus, if the observed long-term instability is

due to exponential growth, downwellings should be more substantial at larger strain-
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rates because greater Ra; enhances instability. This is indeed what the calculations
show. For example, if P (and thus Ra;) is small, only the bottom few isotherms are
significantly deflected at the end of the calculation (Figure 3.8a), but nearly all of
the dense layer is removed at fast shortening rates (Figure 3.8d). In addition, the
colder isotherms penetrate more deeply (Figures 3.9 and 3.10) at faster shortening
rates (larger P).

The same behavior, however, might also result from mechanical thickening of
the cold part of the layer. The velocity boundary conditions force cold fluid into
the right side of the finite element grid and out through its bottom. If the cold
surface layer is in thermal steady state, this cold fluid must be removed from the
layer by the persistent downwelling. In this light, it is not surprising that increased
shortening rates are associated with a more substantial downwelling that penetrates
deeper into the underlying fluid. The depth of penetration of these isotherms can
be estimated by comparing the final depth of each isotherm to that isotherm’s initial
depth. The average of this “deepening factor” for the isotherms that do not encounter
the bottom of the box at the end of the calculation provides a measure of how deeply
a downwelling extends below the shortening region at the surface (Figure 3.12a).
Downwellings are more substantial for rapidly shortening layers (expressed by P),
but the amount of material that participates in these downwellings depends only
weakly on the temperature-dependence of viscosity (expressed by r). This indicates
that these downwellings serve as a mechanism by which thickened material can be
continuously removed from a shortening layer. Although this process is generated by
shortening, it is facilitated by the inherent gravitational instability of this material,
which causes it to ultimately be removed by active downwelling.

The gravitational removal of the basal part of the surface layer prevents it from
thickening into an overly unstable condition from which another transient instability
can develop. Thus, the persistent downwellings that follow prolonged shortening
are part of the steady-state behavior of a shortening layer. In the Earth, however,
shortening cannot be expected to continue indefinitely. If shortening ceased, some,

at least, of the material protruding into the asthenosphere would presumably become
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Figure 3.12: Similar to Figure 3.11, but showing the thermal properties of the steady-
state persistent downwelling that removes material added to the layer by shortening.
(a) shows the approximate depth to which this downwelling penetrates at the end of
the calculations, expressed as a multiple of the original depth of the layer. This depth
is calculated by taking the average of the factor by which each of the nine isotherms
between T = 0.1 and 0.9 deepens, excluding the isotherms that encounter the bottom
of the box at that time. (b) shows the temperature of downwelling material at a depth
equal to that of the original position of the T" = 0.9 isotherm. If shortening were
to stop at this point, material hotter than that shown in (b) would presumably be
removed. It is clear that the persistent downwelling advects cold material deeper
into the mantle if the shortening rate is higher (larger P), and that the temperature
dependence of viscosity is of lesser importance.
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unstable, detach, and then be replaced by hotter material. The amount of material
that might be removed can be estimated by measuring the temperature of the coldest
material that protrudes deeper than the original depth of the T = 0.9 isotherm,
taken to represent the base of the unstable layer. These temperatures are shown
in Figure 3.12b for a downwelling in thermal steady-state. It is clear that colder
material is removed from more rapidly shortening layers (large P), but that the
temperature of material removed is independent of the temperature-dependence of
viscosity. This is consistent with more rapid shortening producing more substantial

persistent downwellings, which are subject to removal once shortening stops.

3.6.5 The Thermal State After 50% Shortening

Geological observations in severely shortened regions such as Tibet indicate that
the total amount of horizontal shortening can reach 50% (shortening by a factor
of two) [Le Pichon, Fournier, and Jolivet, 1992; Molnar, England, and Martinod,
1993]. Horizontal shortening of this magnitude can be accommodated by a doubling
of crustal thickness (100% thickening) in the shortening region, which generates sig-
nificant buoyancy that resists further crustal thickening. This resistance causes the
region of active shortening to migrate to undeformed adjacent regions once horizontal
shortening has reached about 50% [e.g., England and Houseman, 1986; England and
Searle, 1986; Molnar and Tapponnier, 1978]. If the amount of horizontal shortening
is limited to 50%, the amount of time that dense mantle lithosphere is exposed to
the destabilizing effects of horizontal shortening is also limited. In this case, the per-
sistent downwellings discussed above might not penetrate as deeply as they would if
allowed to grow indefinitely.

Because the dimensionless time to the initial removal event is a constant value of
about 8, 50% shortening occurs well after the initial removal event for a slowly short-
ening layer (Figure 3.10a), but the two may be nearly simultaneous if shortening is
rapid (Figure 3.10d). Thus, for the shortening rates studied, 50% shortening typically
occurs sometime after the initial removal event, but before the persistent downwelling

has grown to its full extent. To characterize the thermal state of the persistent down-
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welling at the time of 50% shortening, the depth of penetration of an isotherm at
the time t|y, is calculated and expressed as a multiple of the original depth of the
layer. This calculation is similar to the one performed above for the downwelling after
prolonged thickening, but includes only those isotherms that are not removed in the
initial removal event. Because, for r = 1, all isotherms participate (Figure 3.10), only
the coldest three isotherms are used. The result (Figure 3.13a) shows that persis-
tent downwellings are generally less substantial for 50% shortening than they are for
prolonged shortening (Figure 3.12a), particularly at large strain-rates. In fact, their
diminishment at large P means that for r > 10, the deepening factor has a nearly
constant value between 3 and 4 (Figure 3.13a). Downwelling of this magnitude causes
material hotter than a dimensionless temperature 7" between 0.3 and 0.4 to protrude
deeper than the original depth of the 7" = 0.9 isotherm (Figure 3.13b). Thus, if
convergence slows after shortening an unstable layer by 50%, the hottest 60 to 70%
of downwelling fluid should be removed. This fraction does not depend significantly

on shortening rate or on the temperature dependence of viscosity.

3.7 Application to the Lithosphere

The above analysis shows that several styles of deformation are possible for a dense
layer undergoing horizontal shortening, and that the particular style that a layer
chooses depends on the values of the dimensionless quantities Ra,, Ras, P, and Z'.
This analysis can now be applied to the mantle lithosphere to determine the types
of deformation that are possible as a result of shortening, and to characterize the
changes to the lithospheric structure that may result from this deformation. To do
this, parameter values relevant to the lithosphere must be estimated. These include
pm = 3300 kgm™, ¢ = 98ms% a =3 x10° K™, and k = 107 m? s~ If
the mantle lithosphere varies in temperature between T = 800 K at the Moho and
T,, = 1600 K at its base, the temperature variation across the potentially unstable
mantle lithosphere is Ty = T, — T, = 800 K.

The rheology of mantle lithosphere is thought to be characterized by diffusion
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Figure 3.13: Similar to Figure 3.12, but showing measurements taken at 19, the time
for 100% thickening (or 50% horizontal shortening) to occur. In this case, both the (a)
depth of penetration of the persistent downwelling (given in units of the initial layer
thickness) and the (b) temperature of material protruding deeper than the original
depth of the T" = 0.9 isotherm depend only weakly on both the shortening rate given
by P and the temperature-dependence of viscosity given by r.
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creep, for which n = 1, at stresses lower that 0.1 to 1 MPa, and by dislocation creep,
for which n = 3 to 3.5, at higher stresses [Karato, Paterson, and FitzGerald, 1986).
Convective instability should be accompanied by stresses greater than this, favoring
dislocation creep. Hirth and Kohlstedt [1996] propose that the mantle is “wet” below
60 to 70 km depth, for which Karato, Paterson, and FitzGerald [1986] deduced a power
law exponent of n = 3, an activation energy of () = 420 kJ/mol, and a preexponential
factor of A = 1.9x107 Pa s~ for olivine. Using these parameter values, Conrad and
Molnar [1999] estimate B,, = 1.9 x 10° Pa s*/>. Hirth and Kohlstedt [1996], however,
assign a power law exponent of n = 3.5 to wet olivine. As a result, considerable
uncertainty is associated with Conrad and Molnar’s [1999] estimate of B,,, which is
accommodated here by using n = 3 and allowing B,, to vary.

The “available buoyancy” parameter F), accounts for the temperature dependence
of B for a given temperature profile in a layer. Conrad and Molnar [1999] estimate its
value for wet dislocation creep by assuming an activation energy of @) = 420 kJ/mol.
They find F3 = 1.3 x 107* for an error function temperature profile. If the strain-
rates associated with horizontal shortening control the effective viscosity of the layer,
this viscosity is constant with perturbation amplitude, meaning that the power law
exponent n = 1 is applicable. Following Conrad and Molnar[1999], F; = 5.7x1072 for
the error function temperature profile, which is slightly larger than that estimated
by Conrad and Molnar [1999] for n = 1, because their study uses parameters for
diffusion creep without horizontal shortening. If the temperature profile is not that of
an error function, estimates of the “available buoyancy” should be different from those
assumed here. This uncertainty is acceptable, however, because it can be absorbed
by the uncertainty associated with the strength parameter B,,.

As described above, the values of Ray, Ras, and P can be used to determine
which of the above-described mechanisms should dominate lithospheric deformation.
In particular, their “critical” values (Table 3.1) delineate transitions between differ-
ent styles of thickening and growth. By plotting the location of these transitions as
a function of parameters that can vary, a “phase diagram” can be constructed that

shows the dominant style of growth in different regions of the space defined by the
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variable parameters. An example diagram (Figure 3.14) shows the typical location

Y

of boundaries between the four deformation styles, or “phases,” in the space defined
by the strength parameter B,, and the time t1q9, for 100% thickening to occur, which
defines the strain-rate according to (3.29). In this case, if both Ras < 100 and
Ray < 100, the layer is convectively stable, with mechanical thickening (MT) domi-
nating if P > 1 and thickening by thermal diffusion (TD) dominating otherwise. If
Ray > 100, horizontal shortening still dominates if Z)Ra;/P < 0.5, otherwise pertur-
bations grow exponentially (EG) with time for Ra;/Ras > 1 and super-exponentially
(SEG) otherwise. The locations of these boundaries relative to dimensional values
of B,, and t19p depend on the parameters used to calculate Ra;, Ras, and P. As a
result, diagrams are constructed by plotting the locations of these “critical” values
as functions of B,, and ;g for the lithospheric parameters given above, perturba-
tion amplitudes of Z) = 10% (Figure 3.15) and 7] = 50% (Figure 3.16), and layer
thicknesses of h = 25, 50, 100, and 200 km (parts (a) through (d) in Figures 3.15
and 3.16).

The boundaries between dominating styles of thickening or unstable growth change
as the mantle lithosphere thickens, or as perturbations to it grow. By considering how
these boundaries move due to changes in i or Z, the evolution of the mantle litho-
sphere’s thermal structure can be examined. Consider mantle lithosphere for which
Z =10%, B,, = 10" Pa s'/2. h = 25 km, and t;00 = 50 million years. Initially, such
a lithosphere grows most rapidly by cooling from above (Figure 3.15a). However, as
it thickens, Ra; increases, causing the transitional boundary of P = 1 to move to-
ward larger values of t109. By the time the lithosphere is 50 km thick (Figure 3.15b),
such mantle lithosphere grows most rapidly by horizontal shortening. Alternatively,
if the shortening rate increases suddenly due to an acceleration of convergence at the
surface, 199 should suddenly decrease, causing a transition from thermal diffusion to
horizontal shortening as the most rapid mechanism for deformation (Figure 3.15a).

The thickness of the mantle lithosphere should continue to increase, either by
cooling from above or by horizontal shortening, until the lithospheric layer becomes

convectively unstable. In fact, it can be argued that continental lithosphere is prob-
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Figure 3.14: A cartoon of a “phase diagram” that shows the dominant style of thick-
ening or growth (the “phases”) as a function of the strength parameter B, and the
time, 100, for 100% thickening (or 50% horizontal shortening) to occur. Here, t100
defines the background horizontal strain-rate, as in (3.29). The boundaries between
each of the four regions are determined by the “critical” values associated with Raq,
Ras, and P, summarized in Table 3.1: Ra; = 100, Raz = 100, P = 1, Ra;/Raz = 2,
and Z Ra;/P = 0.5. For each line, arrows show the direction in which a quantity
increases or decreases away from the line. Light lines show portions of these lines that
are not relevant to determining the stability of a given mode. The four mechanisms
include: thickening by thermal diffusion (denoted TD), mechanical thickening associ-
ated with horizontal shortening (denoted M'T), exponential growth of perturbations
(denoted EG), and super-exponential growth of perturbations (denoted SEG).

119



TD

70
50 SEG D

SEG

MT

t100 (Ma)
N
o

MT
EG

7

S ] ]
g: a)h=25km | | b) h=50 km |
) /e zo'flo% | | | | | zo'flo%

EG

30} SEG SEG

MT

t100 (Ma)
N
o

MT

[ d) h=200 km
Z,=10%

[ ¢)h=100 km
Z,=10%

5 9 95 10 105 11 115 1285 9 05 10 105 11 115 12
logB_(Pas®) logB_(Pas")

Figure 3.15: “Phase diagrams” similar to the one exemplified in Figure 3.14, but
where the parameters relevant to the lithosphere (see text) are used to calculate
the locations of boundaries between the different styles of thickening and growth.
Shown in (a) through (d) are diagrams for mantle lithosphere with thicknesses of
h =25, 50, 100, and 200 km, and for an initial perturbation amplitude of Z] = 10%.

ably close to its stability limit for long portions of Farth’s history. The lithospheric
roots beneath the cratonic shields, for example, are thought to have experienced little
deformation since the Archean [e.g., Hoffman, 1990]. Without any deformation, cool-
ing from the surface since that time should cause the lithosphere to grow several times
thicker than its maximum depth, which has been estimated at up to 200 to 300 km
le.g., Gaherty and Jordan, 1995; Jaupart et al., 1998; Jordan, 1988; Simons, Zielhuis,
and van der Hilst, 1999]. Clearly some erosion of the lithospheric base must occur to

limit the lithospheric depth, even if the lithospheric root is partially stabilized due
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to an inherent chemical buoyancy, as has been proposed for the continental “tecto-
sphere” [e.g., Jordan, 1978; 1981; 1988]. If the erosion process involves convective
instability, then the continental lithosphere should be at or near its stability limit,
which is given by Ray = 100 or Ras = 100.

Consider mantle lithosphere that is tectonically stable (not shortening) and that
has grown to its stability limit, for which Raz = 100. The thickness of such lithosphere
is given by the value of A that produces Ras = 100 for values of Z) and B,, appro-
priate for the lower lithosphere (Figures 3.15 and 3.16). For example, if Z) = 10%,
and the experimentally observed value of B,, ~ 10%! Pa s'/® applies, only mantle
lithosphere thinner than ~ 25 km is stable to convection (Figure 3.15a). If mantle
lithosphere thicker than this value can remain stable, B,, must be greater or Z) must
be smaller. In fact, an order of magnitude increase in B,, is required to increase the
maximum thickness of stable lithosphere to 100 km (Figure 3.15¢). An increase in
B,, with lithosphere thickness is perhaps expected due to the pressure dependence of
dislocation creep [e.g., Karato and Wu, 1993]. In addition, it is possible that uncer-
tainties in estimates for Fj5, or in the application of laboratory measurements of B,,
to the lithosphere, could conspire to permit layers that are more than 100 km thick
to be stable to small-scale convection at their base.

If horizontal convergence is applied to a layer that is close to its stability limit
(Ras = 100), gravitational instability can be initiated rapidly. An increase in the
background horizontal strain rate, ¢,,, corresponds to a decrease in the time to 100%
thickening, given by t100 in (3.29). As shown in Figures 3.15 and 3.16, a sufficiently
large decrease in t199 along the Ras = 100 curve causes exponential growth of pertur-
bations to dominate deformation of the layer. For example, if B,, ~ 10'%! Pa s'/? and
Zy = 10%, mantle lithosphere of thickness h = 100 km is stable to convection if short-
ening is sufficiently slow that 190 > 80 Ma (Figure 3.15¢). For t190 ~ 30 million years,
as seems to characterize Tibet [Molnar, England, and Martinod, 1993], the lithosphere
is gravitationally unstable, with perturbations growing exponentially with time (Fig-
ure 3.15¢). Once perturbations begin to grow, the region for which Ras > 100 (super-

exponential growth of perturbations) begins to include larger values of B,, (compare
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Figure 3.16: Similar to Figure 3.15, but for a perturbation amplitude of Z} = 50%. A
comparison to Figure 3.15 shows that the region in which super-exponential growth
of perturbations dominates (denoted SEG) is larger for larger 7.

Figures 3.15 and 3.16). Thus, 100 km thick lithosphere for which B,, = 10'°! Pa s1/3
and t100 = 30 Ma, but for which perturbations have increased to 50%, should ex-
hibit super-exponential growth of perturbations (Figure 3.16¢). In fact, if the layer
is already at its stability limit before it begins thickening, super-exponential growth
should begin after only a small increase in perturbation amplitude, meaning that the
majority of the deformation should occur as super-exponential growth.

If the onset of horizontal convergence is not sufficient to initiate exponential
growth, super-exponential growth may still develop after sufficient mechanical thick-

ening. First, non-uniform horizontal shortening may increase the amplitude of pertur-
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bations, causing the layer to move from a state in which horizontal shortening domi-
nates to one in which super-exponential growth dominates. If B,, = 10'°! Pa s'/% and
h =100 km, but 199 decreases only to 100 million years, an increase in perturbation
amplitudes due to horizontal shortening should still cause super-exponential growth
rapidly to become dominant (compare Figures 3.15¢ and 3.16¢). Alternatively, an
increase in layer thickness h due to mechanical thickening should cause a marginally
stable layer to become unstable (compare the location of B,, = 10'%! Pa s'/? and
t100 = 100 million years in Figures 3.15¢ and 3.15d).

Once super-exponential growth begins, the time for the initial gravitational in-
stability to remove the bottom part of the mantle lithosphere can be estimated by
making ¢, in (3.31) dimensional using (3.5), which for n = 3 can be written:

o hr o1
b kRas 203

(3.32)

Because super-exponential growth begins when Ras = 100, with C' = 0.45 the removal
time can be written as ¢, = 0.055k? /k. With k = 107% m? s™!, #, becomes a function
of only the layer thickness, h (Figure 3.17). All of the other parameters that affect
growth are eliminated from this expression by the assumption that super-exponential
growth begins when Ras = 100. If, as discussed above, a phase of exponential growth
or shortening precedes super-exponential growth, its duration should be short and
thus should not significantly affect this estimate of ¢;.

As discussed above, the amount of material removed by the initial instability de-
pends primarily on the temperature-dependence of viscosity. If, as is likely to be
the case, viscosity varies by a factor of more than 100 across the mantle lithosphere,
at most only the hottest 30% of the mantle portion of the lithosphere is removed
(Figure 3.11). If shortening continues after this time, however, the ongoing addition
of cold material to the lithosphere is balanced by a persistent downwelling that re-
moves this extra cold mantle lithosphere from the shortening region. If shortening
is sufficiently fast and is allowed to occur indefinitely, this downwelling is capable of

causing all but the coldest 10% of the mantle lithosphere to be advected into the man-
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Figure 3.17: Plot of the time, ¢;, for the initial instability to remove the base of the
mantle lithosphere, and of the time, t10, for 100% thickening of the lithosphere (or
50% horizontal shortening at the surface) to occur. Both ¢, and t19 are calculated as
described in the text as a function of the thickness, h, of the mantle lithosphere. The
100% thickening time depends on the shortening rate, expressed here in terms of P.

tle once shortening stops (Figure 3.12b). Because this persistent downwelling results
more from mechanical thickening than from a balance of viscous and gravitational
body forces, the amount of material that participates in this downwelling is nearly
independent of the temperature-dependence of viscosity (Figure 3.12b).

The total amount of lithospheric shortening that occurs on the Earth may be
limited to 50%. As a result, the amount of time during which a persistent downwelling
can develop may be limited as well. The time to 50% shortening (100% thickening)
can be compared to the time for the initial instability to occur by taking the ratio of
t100 and 1, using (3.29) and (3.32). Simplifying using Ras = 100 and C' = 0.45 shows
that t100 = #,/(0.055P). Thus, the time to 50% shortening is some multiple of the
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initial removal time, where this multiple depends on P (Figure 3.17). If shortening
is sufficiently fast that P > 1/0.055 ~ 18, mechanical thickening of the layer should
occur more rapidly than convective instability, meaning that an estimate of ¢; is
probably not relevant. As shown in Figure 3.17, P > 18 requires 100 km thick mantle
lithosphere to double in thickness in only 15 million years, and thinner lithosphere
to shorten even more rapidly. This is faster than the ~ 30 million years expected
for shortening by 50% in Tibet [Molnar, England, and Martinod, 1993], but implies

-1

horizontal strain-rates of ~ 107!%s™1, which are perhaps not unreasonable for other

convergent zones such as the Transverse Ranges of California [e.g., Houseman et al.,
1999].

On the other hand, if shortening is slow enough that P < 18, then ti00 > t,
meaning that 50% shortening occurs after the initial removal event. In this case,
only the hottest 60% of material is advected into the mantle (Figure 3.13b). Because
the persistent downwelling removes material that is advected into the downwelling
region, its amplitude depends on the amount of shortening that occurs. Thus, for
shortening of 50%, the amount of material that participates in the downwelling is a
constant. This amount (the hottest 60%, corresponding to ~ 500 C of temperature
variation if the mantle lithosphere accounts for ~ 80000) is a larger fraction of the
lithosphere than is observed to participate in the initial instability (at most the hottest
30%, or ~ 25000), making the persistent downwelling a potentially more important
consequence of shortening than the initial removal event.

A possible limitation of this analysis is that it is performed in only two dimen-
sions, meaning that downwellings necessarily are sheet-like structures. This limitation
is perhaps acceptable because this study is designed to treat instability that is gen-
erated by horizontal shortening, which, for convergence between two large plates, is
inherently a two-dimensional process. Because, however, instabilities grow exponen-
tially or super-exponentially with time, small lateral differences in growth rate can be
rapidly amplified, causing a downwelling sheet to have a three-dimensional structure,
which could complicate the application of these results to the mantle. In addition,

these results treat dislocation creep, for which n ~ 3. Thus, regions of low strain-rate
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resist flow because their effective viscosity is high. It is possible that flow in the
asthenosphere is instead Newtonian, with a viscosity as low as 10'? Pa s [e.g., Hager,
1991]. In this case, the viscosity beneath the lithosphere would not be dictated by
the background shortening rate, and thus would allow the lower lithosphere to be
removed more rapidly, even at lower shortening rates than the above analysis sug-
gests. On the other hand, deflection of the Moho is also ignored, which, if driven by
convective instability, should tend to resist convective instability because it is gravita-
tionally unfavorable [e.g., Neil and Houseman, 1999]. Moho deflection may, however,
also promote convective instability by generating large-amplitude perturbations to

the mantle lithosphere’s thermal structure.

3.8 Conclusions

The theory and numerical experiments described above examine the deformation of
unstable mantle lithosphere that is undergoing active shortening. The thermal struc-
ture of mantle lithosphere evolves due to four processes. In the absence of convective
instability, mantle lithosphere thickens either by horizontal shortening or by cool-
ing from above. Convective instability manifests itself either by exponential growth
of perturbations, which requires lithospheric viscosity to be set by the background
shortening rate, or by super-exponential growth of these perturbations, in which case
viscosity is set by the strain-rates associated with instability. The conditions under
which each type of deformation is dominant can be determined by comparing the
amplitudes of the dimensionless parameters Ray, Ras, P, and Zj, which are defined
for this purpose (Table 3.1).

In applying these results, mantle lithosphere is assumed to have cooled suffi-
ciently that Ras ~ 100, meaning that it is nearly convectively unstable. In this
case, horizontal shortening can easily initiate convective instability by increasing the
amplitude of perturbations, either directly through non-uniform thickening, or by
lowering the background viscosity so that perturbations begin to grow exponentially

with time. Once super-exponential growth begins, the time for removal is approxi-

126



mately ¢, = 0.055h% /k. Thus, for mantle lithosphere 100 km thick, the initial removal
event occurs 17 million years after shortening initiates super-exponential growth. For
strongly temperature-dependent viscosity, at most only the hottest 30% of the mantle
lithosphere is involved in this event.

As shortening of the lithosphere continues, downwelling of lithospheric material
persists after the initial removal event. This downwelling removes material that is
continually being added to the layer by shortening, and thus is more substantial for
larger shortening rates. If, however, the total amount of shortening is limited to
50%), corresponding to thickening of 100% (doubling of crustal thickness), shortening
may cease before this downwelling can penetrate into the mantle to its maximum
possible depth. Because this persistent downwelling removes material added to the
lithosphere by shortening, its amplitude depends on the amount of shortening that
occurs. For 50% shortening, the hottest 60% of mantle lithosphere participates in the
downwelling, which extends to depths about 3 to 4 times the lithospheric depth. As
a result, the downwelling that results from mechanical thickening of the layer is more
substantial than the downwelling associated with the initial removal event.

Once mechanical thickening stops after achieving 50% shortening, the persistent
downwelling that extends into the mantle beneath the shortening region is no longer
replenished by the addition of lithospheric material above it. Because it is a thin
feature, as evidenced by the depth (3 to 4 times h) to which only the lower 60% of
the mantle lithosphere extends (corresponding to temperatures between about 1100 K
and 1600 K), it is not likely to survive once horizontal shortening stops. If this
“finger” of cold lithosphere is removed, either due to its own gravitational instability
or to mantle shear, its replacement by hot asthenosphere should cause significant
uplift at the surface, which could lead to rapid mountain building. The timing of
surface uplift should coincide approximately with the end of a period during which
50% shortening is achieved. For Tibet, 50% shortening (doubling of crustal thickness)
began at 40 to 50 Ma and is thought to have taken 30 to 40 million years to complete.
Rapid uplift at the surface is inferred to begin at approximately 8 Ma [Harrison et
al., 1992; Molnar, England, and Martinod, 1993], after shortening had ceased within
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the interior of Tibet. This pattern is consistent with the gradual building of a cold
protrusion into the mantle by horizontal shortening and rapid surface uplift associated

with its removal once shortening stops.
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