
Chapter 3Convective Instability ofThickening Mantle LithosphereAbstract. Mantle lithosphere, being colder and therefore denser than the under-lying mantle, is prone to convective instability that can be induced by horizontalshortening. Numerical experiments on a cold layer with imposed horizontal short-ening were carried out to examine the relative importance of mechanical thickening,thermal di�usion, and gravitational instability in deforming the layer. This analysisis then used to develop a method for determining which of these styles dominatesfor a layer thickening at a given rate. If viscosity is non-Newtonian, the impositionof shortening decreases the lithospheric strength, which causes perturbations to thelithosphere's temperature structure to grow exponentially with time. Once these per-turbations become su�ciently large, they then grow super-exponentially with time,eventually removing the lithospheric base. Because lithospheric viscosity is highlytemperature-dependent, at most only the lower 30% of the lithosphere participatesin the downwelling associated with this initial super-exponential growth event. Afterthis event, however, a downwelling develops that removes material advected into theregion of downwelling by horizontal shortening. The magnitude of this persistentdownwelling depends on the rate and duration of shortening. If the total amount ofshortening does not exceed 50% (doubling of crustal thickness), then this downwellingextends to a depth 3 to 4 times the thickness of undeformed lithosphere and forms a71



sheet signi�cantly thinner than the width of the region undergoing shortening. Onceshortening stops, this downwelling is no longer replenished by the shortening process,and should then detach due to its inherent gravitational instability. The hottest 60%of the mantle portion of the lithosphere could be removed in such an event, whichwould be followed by an inux of hot, buoyant asthenosphere that causes rapid sur-face uplift. Because more cold material is removed after the cessation of shorteningthan by the initial gravitational instability, the former has a potentially greater in-uence on the amount of surface uplift. The Tibetan interior is thought to have beenshortened by about 50% in � 30 million years and afterward, at approximately 8 Ma,experienced a period of rapid uplift that may have resulted from the removal of alarge downwelling \�nger" of cold lithosphere generated by shortening.3.1 IntroductionThickening of the crust is one consequence of horizontal convergence at the Earth'ssurface and is the main process by which mountains are built. Thickening of mantlelithosphere may occur as well, and has been proposed as an accompanying processthat may also a�ect mountain building. In particular, thickening should enhance thegravitational instability of cold, dense mantle lithosphere with respect to the hot,buoyant asthenosphere beneath it (Figure 3.1a) [e.g., Fleitout and Froidevaux, 1982;Houseman, McKenzie and Molnar, 1981]. If the mantle lithosphere becomes su�-ciently unstable, localized convective downwelling, of the type described by Howard[1964], may be initiated at the base of the mantle lithosphere (Figure 3.1b). The sub-sequent removal of cold lithosphere, and its replacement by hot mantle, could resultin rapid surface uplift followed by extension [e.g., Bird, 1979; England and Houseman,1989; Neil and Houseman, 1999]. This process is thought to have caused rapid upliftof the Tibetan plateau 8 million years ago [Harrison et al, 1992; Molnar, England,and Martinod, 1993], and has been inferred for other mountain belts [Houseman andMolnar, 1997; Platt and England, 1994; Platt et al., 1998].The gravitational instability of mantle lithosphere can be enhanced by thickening72
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AsthenosphereFigure 3.1: Cartoons showing (a) horizontal shortening and thickening of the litho-sphere, which includes both the crustal layer and the lithosphere's mantle portion.Mechanical thickening should enhance the gravitational instability of the cold, dense,mantle lithosphere with respect to the hot asthenosphere below. If the mantle litho-sphere is made su�ciently unstable, its lower portion may be removed in a localizedconvective downwelling, drawn in (b). Removal of mantle lithosphere and its replace-ment by hot asthenosphere could result in rapid uplift at the surface. Shown on theright in both (a) and (b) is output from a numerical experiment that shows the gen-eration of convective instability by mechanical thickening of a cold, dense layer. Herearrows represent velocity and show horizontal shortening of the central region in (a)and a faster ow associated with convective downwelling in (b). Temperature, repre-sented by shades of gray (colder is darker) and contours (evenly spaced temperatureintervals), clearly shows the removal of the cold layer's basal portion.73



in several ways. First, thickening increases the amount of dense, potentially unstablematerial in a thickened region [e.g., Conrad and Molnar, 1999; Fleitout and Froide-vaux, 1982; Houseman, McKenzie and Molnar, 1981]. Second, if lithospheric rocksdeform by a nonlinear stress-strain relationship, as they are observed to do in labo-ratory experiments, the strain-rates associated with shortening should decrease thebackground strength of the lithosphere and enhance its gravitational instability [Mol-nar, Houseman, and Conrad, 1998]. Finally, nonuniform thickening generates largevariations in the lithosphere's strati�ed temperature �eld, allowing gravitational in-stability to grow from accompanying variations in the density �eld. If viscosity isnon-Newtonian, the strain-rates associated with the growing instability decrease thelithosphere's strength and cause the instability to grow more rapidly. This processaccelerates into a rapid removal of the lithospheric base [e.g., Canright and Morris,1998; Conrad and Molnar, 1999; Houseman and Molnar, 1997].These mechanisms of promoting gravitational instability of the lithosphere havebeen studied by approximating the convective instability as a Rayleigh-Taylor insta-bility, in which di�usion of heat is ignored. Thermal di�usion, however, smoothsperturbations to the lithosphere's strati�ed temperature �eld, and thus may retard,or even prevent, their growth as part of convective instability. Conrad and Molnar[1999] address this issue by including the stabilizing e�ects of thermal di�usion for ageneralized density and viscosity structure. These authors, however, study instabilityonly in layers that are already convectively unstable, and consider horizontal short-ening only as a mechanism that allows the lithosphere to thicken into an unstablestate. The role of horizontal shortening in making lithosphere unstable is treatedmore fully by Molnar, Houseman and Conrad [1998], but their studies do not includethermal di�usion. Thus, an analysis of the full convective instability for a layer thatis undergoing horizontal shortening is needed.The numerical experiments described below, which are similar to those exempli-�ed in Figure 3.1, simulate mantle lithosphere that eventually becomes convectivelyunstable because it thickens. I compare the deformation that results to the unstablegrowth predicted by simpler studies of the Rayleigh-Taylor instability for di�erent74



rheologies [e.g., Conrad and Molnar, 1997; 1999; Houseman and Molnar, 1997], un-dergoing horizontal shortening [e.g., Molnar, Houseman, and Conrad, 1998], and inconjunction with thermal di�usion [e.g., Conrad and Molnar, 1999]. The rheologi-cal conditions and magnitudes of shortening rates that generate the various types ofgravitational instability can then be determined in a general way through the usea dimensionless scaling analysis, as can the approximate time-dependent behaviorof a growing instability. Finally, I attempt to determine how much material maybe removed by convective instability in a thickening environment, and the e�ect ofthis removal on the remaining lithosphere. As a result, this study treats the fullconvective instability of thickening mantle lithosphere more completely than do pre-vious analyses. Because they build upon previously-developed scaling analyses forvarious aspects of the the full problem treated here, these results are comprehensive,but easily applied to gravitationally unstable layered structures such as the mantlelithosphere.3.2 Review of Rates for Unstable GrowthThe convective stability of a thickening cold thermal boundary layer can be studied byobserving the behavior of small perturbations to the boundary layer's strati�ed tem-perature �eld. Various time scales are associated with di�erent mechanisms that pro-mote the growth or decay of these perturbations. The �rst growth mechanism is theshortening process itself, which advects cold material downward as the layer thickens,and therefore ampli�es perturbations to the temperature �eld [e.g., Bassi and Bonnin,1988; Fletcher and Hallet, 1983; Ricard and Froidevaux, 1986; Zuber, Parmentier, andFletcher, 1986]. Two types of growth are associated with the gravitational instabilityof a dense uid overlying a less dense uid, also known as a Rayleigh-Taylor instabil-ity. If the viscosity of the deforming uid is independent of strain-rate, perturbationsinitially grow exponentially with time [e.g., Chandrasekhar, 1961; Conrad and Mol-nar, 1997; Whitehead and Luther, 1975]. For non-Newtonian viscosity, growth issuper-exponential with time [e.g., Canright and Morris, 1993; Houseman and Mol-75



nar, 1997]. Finally, the lithosphere's density �eld is perturbed through temperature,which is subject to thermal di�usion. Thermal di�usion smooths temperature vari-ations, and thus diminishes the amplitude of density perturbations, slowing, or evenpreventing, their unstable growth [e.g., Rayleigh, 1916].The complete convective instability of a thickening boundary layer with non-Newtonian viscosity can thus be ideally described as the simultaneous action of (a)mechanical thickening, (b) exponential followed by (c) super-exponential growth ofperturbations, and (d) thermal di�usion acting to suppress growth. Each mechanismoperates with a characteristic time scale that depends on size of the perturbation itselfand on the physical properties of the layer. In general, one of the four mechanismshas a dominant inuence on the behavior of perturbations because it induces growthor decay of perturbations at signi�cantly faster rates than do the others. In whatfollows, expressions for these growth or decay rates are developed. These expressionsare later used to construct dimensionless parameters that compare the relative im-portance of the di�erent mechanisms in deforming a given thermal boundary layerthat is undergoing horizontal shortening.3.2.1 Exponential GrowthIf thermal di�usion is ignored, perturbations to an unstable density structure growin a manner that can be described by an analysis of the Rayleigh-Taylor instability.In this analysis, it is useful to describe deformation of a uid by a strain rate, _�ij,de�ned in terms of the components of velocity, ui:_�ij = 12  @ui@xj + @uj@xi! (3.1)The ow �eld is incompressible, meaning that _�ii = 0. In a highly viscous uid,gravitational body forces are balanced by viscous stresses associated with ow. Thisow, described by the strain rate, is related to the deviatoric stress, �ij, by:�ij = 2� _�ij (3.2)76



The e�ective viscosity, �, can vary with temperature and may depend on strain rate:� = B2 _E( 1n�1) (3.3)whereB is a rheological parameter, n is a power law exponent, and _E2 = (1=2)Pi;j _�ij �_�ij is the second invariant of the strain-rate tensor. Dislocation creep of olivine in thelithosphere is often described using (3:3) and n about 3.5 [e.g., Kohlstedt, Evans, andMackwell, 1995].For Newtonian viscosity (n = 1), � = B=2 is a constant. In this case, perturbationsto an unstable density structure grow exponentially with time [e.g., Chandrasekhar,1961; Conrad and Molnar, 1997]. Thus, if Z is the magnitude of a sinusoidal pertur-bation of wavelength �, and w = dZ=dt is its downward speed, both obey:dwdt = qw and dZdt = qZ (3.4)where q is the exponential growth rate.Conrad and Molnar [1999] nondimensionalize time and length according to:t0 = t�g�T0h2�m F1 and z0 = zh (3.5)where � is the mantle density, � is the thermal expansivity, g is the gravitationalacceleration, T0 is the temperature di�erence across the layer, h is the thicknessof the unstable layer, and �m is the Newtonian viscosity at the base of the layer.The parameter F1 is a constant that accounts for the temperature dependence ofviscosity, termed the \available buoyancy" by Conrad and Molnar [1999], who showthat F1 is given by the integral through the layer of the thermal buoyancy dividedby the viscosity. Because colder portions of the layer are also stronger, the \availablebuoyancy" scaling quanti�es the portion of the total buoyancy that is su�cientlyweak to participate in the gravitational downwelling. Thus, the scaling of time givenby (3:5) applies for cold layers with Newtonian viscosity, and arbitrary dependenceof viscosity on temperature. 77



Using (3:5) to nondimensionalize (3:4) yields an expression for a dimensionlessgrowth rate q0, which can be related to the dimensional growth rate, q, according to:q = �g�T0h2�m F1q0 (3.6)Using numerical experiments, Conrad and Molnar [1999] measure a maximum valueof q0 � 0:2 for dimensionless wavelengths close to �0 = �=h = 4. The combinationof (3:4) and (3:6) provides an estimate of the downward speed at the bottom of aperturbation growing exponentially with time:w1 = dZdt = �g�T0h2�m F1q0Z (3.7)where the subscript of w1 refers to the value of the power-law exponent, n = 1.If viscosity is non-Newtonian (n > 1), �m decreases as strain-rates increase, asshown by (3:3). For a dense layer undergoing horizontal shortening, strain-ratesare associated with both horizontal shortening and unstably growing perturbations.For su�ciently small perturbation amplitudes, the strain-rates due to shortening aregreater, and thus determine the e�ective viscosity of the dense layer. As long asthis viscosity remains constant, perturbations grow exponentially with time and withgrowth rate given by (3:6), where the viscosity is given by (3:3). Once strain-ratesassociated with the growing perturbation begin to dominate those due to shortening,e�ective viscosity is a�ected and growth proceeds super-exponentially, as describedbelow. Thus, as suggested by Conrad and Molnar [1997] and con�rmed by Molnar,Houseman and Conrad [1998], perturbations may grow exponentially with time evenif viscosity is non-Newtonian, but only if their amplitude is su�ciently small.3.2.2 Super-Exponential GrowthAn increase in the amplitude of a growing perturbation causes an increase in strain-rates, and thus a decrease in the e�ective viscosity of a non-Newtonian uid (n > 1).This decrease in viscosity causes a density instability to grow super-exponentially with78



time [e.g., Canright and Morris, 1993; Houseman and Molnar, 1997]. By approximat-ing _E � w=h, Houseman and Molnar [1997] obtain an expression for the time-varyingviscosity using (3:3). This leads to an expression for the downward speed, wn, of:wn = dZdt = �Cn�n ��mg�T0Bm �n hFnZn (3.8)where Fn is the \available buoyancy," which depends on n and the depth dependenceof B, Bm is the value of B at the base of the unstable layer, and C is a dimensionlessmeasure of the rate of growth [Conrad and Molnar, 1999]. Notice that when n = 1,(3:8) reduces to (3:7) and C is equivalent to q0. For n = 3, measurements of C fordi�erent dependences of B on T di�er from 0:45 by about 20% [Conrad and Molnar,1999].Following Houseman and Molnar [1997], Conrad and Molnar [1999] suggest nondi-mensionalizing distance and time according to:t00 = t �g�T0hBm !n Fn and z00 = z0 = zh (3.9)where double primes indicate a nondimensionalization of time for super-exponentialgrowth. Solving for w00n in terms of t00 yields:w00n = �C �n� 1n � (t00b � t00)�( n1�n ) (3.10)which indicates super-exponential growth [Houseman and Molnar, 1997]. Here t00b isthe dimensionless time at which speed becomes in�nite and the instability must bedetached from the dense layer. By integrating (3:10), Houseman and Molnar [1997]show: t00b = � nC�n Z 0(1�n)0(n� 1) (3.11)where Z 00 is perturbation's initial amplitude.79



3.2.3 Horizontal ShorteningHorizontal shortening of a layer generates thickening and causes the base of the layerto descend with a speed ws = dh=dt. Incompressibility requires _�xx = � _�zz = ws=h,giving: ws = dhdt = _�xxh and dwsdt = _�xxws (3.12)A comparison to (3:4) shows that (3:12) is an expression for exponential growth. Inthis case, however, it is not the perturbation amplitude Z that grows exponentiallywith time, but the thickness of the entire layer h. The \growth rate" in this case issimply _�xx.3.2.4 Di�usion of HeatThe cooling of a boundary layer generates the negative buoyancy that drives con-vective instability. Conductive cooling of a halfspace, appropriate for the cooling ofoceanic lithosphere, yields a temperature pro�le given by an error function:T (z) = Ts + T0 erf(�z=h) where h = 2p�tc (3.13)Here tc is the time during which the halfspace has cooled [e.g., Turcotte and Schubert,1982, pp. 163-167] and Ts is the surface temperature. The rate at which an isothermat depth h descends can be easily determined by taking the time derivative of h:wd;v = dhdt = s�tc = 2�h (3.14)where the subscripts d and v denote di�usion in the vertical direction.Di�usion of heat also smooths, and thus diminishes, the horizontal perturbationsin temperature from which instability must grow [e.g., Conrad and Molnar, 1997;1999]. Consider perturbations to the background temperature �eld of the form �T �cos(kx), where �T is the temperature perturbation, k = 2�=� is the wavenumber,and x is horizontal distance. The horizontal temperature �eld is subject to the heat80



conduction equation: @�T@t = � @2�T@x2 ! (3.15)where � the the thermal di�usivity [e.g., Turcotte and Schubert, 1982, p. 154]. Per-turbations decay exponentially with time as:@�T@t = ��4�2�2 �T (3.16)The wavelength, �, should scale with the thickness of the layer, h. In addition, theamplitude of a perturbation to an isotherm, Z, should be linearly related to theamplitude of horizontal temperature variations, �T . Ignoring constants, horizontalthermal di�usion then generates a characteristic rate of:wd;h = dZdt � ��Zh2 (3.17)where the negative sign indicates a diminishment of perturbation amplitudes withtime.3.3 Numerical ExperimentsNumerical experiments, similar to those performed by Conrad and Molnar [1999],can be used to search for the conditions under which each mode of deformationis dominant. I use the �nite element code ConMan, which can solve the coupledthermal di�usion and incompressibleNavier-Stokes equations for high Prandtl number[King, Raefsky and Hager, 1990]. Convective instability is initiated by imposing atemperature �eld as in (3:13). With an assigned thermal expansivity �, colder uidis denser and ows downward into the underlying warm uid as the instability grows.Perturbing (3:13) by applying:h(x) = 2p�tcq1 + p cos(2�x=�) (3.18)81



where p is a constant that speci�es the perturbation amplitude, initiates unstablegrowth. This corresponds to a sinusoidal variation in tc, which imposes a smoothperturbation.The �nite element grid has a depth 8:27h and a width of �0=2 = 2:07h. Per-turbations with this wavelength grow most rapidly [Conrad and Molnar, 1999], andthus should reect the unstable growth that occurs in a system initially perturbedat all wavelengths. The grid consists of 54 elements in the vertical direction, with 36elements in the upper half of the box, giving double resolution in the region where themost of the deformation occurs. Eighteen elements in the horizontal direction makeeach element in the upper half of the box square. This resolution is coarser than thatused by Conrad and Molnar [1999], but tests show that measurements of growth rateare only changed by a few percent.Horizontal shortening is generated by imposing horizontal velocity boundary con-ditions along the vertical and top surfaces of the box. Speci�cally, the left side ofthe box has zero horizontal velocity, and a horizontal velocity of �v is imposed alongthe right boundary. On both sides, free slip in the vertical direction is permitted.Along the top surface, the imposed velocity is zero in the vertical direction, and hasa horizontal component that tapers linearly from zero on the left to �v on the right.These boundary conditions set up a ow that allows the dense surface layer to thickenaccording to (3:12), where _�xx = 2v=�. Horizontal shortening could also have been im-plemented by imposing forces, instead of velocities, on the sides of the box. Althoughthis method more closely resembles lithospheric shortening, which probably involvesexternal forces acting on strong surface plates, it does not specify the location or therate of thickening, making the resulting deformation more di�cult to analyze. In thiswork, the pattern of shortening is imposed by the velocity boundary conditions, andan assumption is made that external forces could generate this pattern if present. Fi-nally, no stress boundary conditions are imposed along the bottom boundary so thatmaterial is not constrained to circulate within the box, which could impede the ow.The box is su�ciently deep, however, that the sinking boundary layer accelerates toa terminal velocity before approaching the bottom of the box.82



The imposition of zero vertical velocity at the surface ignores any downward de-ection of the crust-mantle boundary, which may inuence gravitational instabilityof the mantle lithosphere. For example, downward motion of the Moho is gravi-tationally unfavorable, which causes unstable growth below the Moho to be slowedby any Moho deection that it creates [Houseman et al., 1999; Neil and Houseman,1999]. This e�ect, however, requires a coupling between deection of the Moho andconvective instability, and thus should be diminished if the cold lithosphere near theMoho is stronger than the downwelling portion of the mantle lithosphere. As a re-sult, the stabilizing e�ects of a crustal layer should be negligible if viscosity is stronglytemperature-dependent, as is considered here. On the other hand, Moho deectioninduced by thickening should increase the rate at which the cold mantle lithosphereis forced downwards into the hot asthenosphere. This should increase the amplitudeof perturbations, which, for non-Newtonian viscosity, increases the downward speedsassociated with gravitational instability, as shown by (3:8). Thus, deection of theMoho by horizontal shortening may promote convective instability.Viscosity in this analysis is non-Newtonian, as described by (3:3), with a power-lawexponent of n = 3. Following Conrad and Molnar [1999], B varies with temperatureaccording to: B(T ) = Bm exp(ln(r)Tm � TT0 ) (3.19)where the parameter r is the total variation in B across the uid's temperaturerange, and Tm is the temperature of the underlying uid. Thus, B(Tm) = Bm andB(Ts = Tm � T0) = rBm. The temperature dependence of viscosity is altered byvarying r.3.4 A Comparison of Rates for Unstable GrowthA dense layer of non-Newtonian uid that is undergoing horizontal shortening shouldexhibit time-dependent growth or decay of perturbations that can be described pre-dominantly by one of the above-mentioned modes of deformation. These modes in-clude exponential and super-exponential growth of perturbations, uniform thickening83



of the layer, and di�usion of heat in the vertical and horizontal directions. Equations(3:7), (3:8), (3:12), (3:14), and (3:17) provide expressions for w1, w3, ws, wd;v, andwd;h, which are the downward speeds of isotherms near the bottom of an unstabletemperature structure for each of these modes operating independently. In general,the dominant mode should be the one that causes the isotherms of a layer to movemost rapidly. Because the above speeds depend on the material properties of thelayer, the shortening rate, and the amplitude of the perturbations to the layer's tem-perature structure, the dominant mode should also depend on these quantities, andmay change with time as perturbations grow.In what follows, a series of numerical experiments is used to determine the dom-inant mode of deformation for various combinations of the relevant parameters. Toapply these experiments generally, dimensionless numbers are constructed by tak-ing ratios of various combinations of the expressions for speed given above. Thenumerically-determined set of parameter values for which a given mechanism de-forms isotherms most rapidly can then be expressed as ranges of these dimension-less numbers. Thus, each deformation mechanism is dominating in its own regionof dimensionless parameter space, and the boundaries between these regions de�ne\critical" values of the dimensionless parameters. To determine the dominant modeof deformation for any given layer that is undergoing shortening, one needs only to es-timate values for the dimensionless numbers de�ned below, and then compare thesevalues to the measured \critical" values. A summary of the various dimensionlessparameters and their critical values is given in Table 3.1.3.4.1 Convective Instability: Unstable Growth and ThermalDi�usionBy studying a layer that is not undergoing horizontal shortening, Conrad and Mol-nar [1999] determine the basic requirements for convective instability. Their analy-sis recognizes that horizontal thermal di�usion causes perturbations to an unstabletemperature structure to decrease in amplitude with speed wd;h given by (3:17). If84



viscosity is e�ectively Newtonian (n = 1), exponential growth causes uid to movedownward with speed w1 given by (3:7). The ratio of these two speeds yields a di-mensionless number that is proportional to a \Rayleigh" number, analogous to theRayleigh number commonly used in thermal convection, and measures the convectiveinstability of a thermal boundary layer:Ra1 = �mg�T0h32��m F1 � w1wd;h (3.20)where the constant q0 is ignored in the de�nition of Ra1. If viscosity is non-Newtonianwith power law exponent n, the downward speed is given by wn in (3:8). In this case,the relevant dimensionless \Rayleigh" number becomes:Ran = ��mg�T0nBm �n h3Zn�1� Fn � wnwd;h (3.21)Note that if n = 1, Ran becomes Ra1.Whether perturbations grow unstably or are damped by thermal di�usion dependson the relative values of wn and wd;h, and thus on the parameter Ran. A large valueof Ran means that wn >> wd;h, and unstable growth should dominate. To determinethe \critical" value of Ran above which a cold boundary layer becomes convectivelyunstable, Conrad and Molnar [1999] measure the downward speed of material with atemperature of T 0 = T=T0 = 0:9 (near the base of the layer) as a function of time ina series of numerical experiments similar to those described above, but using _�xx = 0.For n = 1, the initial slope of a plot of lnw0 versus t0, made dimensionless using (3:5),gives the dimensionless exponential growth rate, q0. Similarly, if n > 1, a plot ofw00�2=3 versus t00, where time is nondimensionalized according to (3:9), should have aslope of �C(n� 1)=n, as shown by (3:10). Varying the viscosity �m, or the viscositycoe�cient Bm if n > 1, allows the growth rates q0 or C to be determined as a functionof Ra1 or Ran.Numerical experiments [Conrad and Molnar, 1999] show that for large Ra1, growthoccurs with dimensionless growth rates close to q0 � 0:2. If, however, Ra1 < 1000,measured values of q0 are less than 0:2, and for Ra1 < 100 they become negative.85



Negative values of q0 indicate that perturbation amplitudes are diminished by thedi�usion of heat faster than they can grow. Results are similar for n = 3, whereC � 0:45 for Ra3 > 1000 and negative for Ra1 < 100. Thus, the \critical" valueof Ran is about 100, at least for n = 1 and n = 3. If Ran > 100, unstable growthoccurs; otherwise, the layer is stable to convection.3.4.2 Horizontal Shortening and Thermal Di�usionNow consider a layer of uid with non-Newtonian viscosity and large B such thatRa3 < 100, and that thickens due to an imposed horizontal strain-rate _�xx. As de-scribed above and by Conrad and Molnar [1999], such a layer should be convectivelystable, so that any heat transfer must be due either to advection by the imposedhorizontal shortening or to thermal di�usion. Horizontal shortening causes the bot-tom of a layer to descend with velocity ws, as shown by (3:12). Isotherms also growdeeper due to cooling from above, at a rate given by (3:14) as wd;v. The ratio of thesetwo rates yields a dimensionless quantity de�ned here as P because it is similar to aPeclet number, which compares rates of advective and di�usive heat transport:P = _�xxh2� � wswd;v (3.22)where the factor of 2 is omitted for simplicity. If P is large, boundary layers thickendue to horizontal shortening, but if P is small, they thicken by cooling.The \critical" value of P for which the transition between these two types ofthickening occurs is determined by �rst measuring the downward velocity, w, of theT 0 = 0:9 isotherm as a function of time for many di�erent values of P . Thickening ofthe layer by horizontal shortening alone causes dimensionless velocity and time to berelated according to: w000w000(t000 = 0) = exp t000 where t000 = t _�xx (3.23)which is obtained by nondimensionalizing the expression for dws=dt in (3:12) and86



integrating. According to (3:23), a plot of ln(w000) versus t000 should have a slope ofunity if shortening is dominant. The measured value of this slope is a \growth rate"that is nondimensionalized by _�xx and termed q000 here. It is clear from Figure 3.2that q000 � 1 for P greater than about 10, which is consistent with uniform thickening.Because these measurements are for a layer that is convectively stable (Ran < 100),thickening alone must dominate for P > 10.For P less than about 1, q000 increases with decreasing P (Figure 3.2), which indi-cates that growth occurs more rapidly than would be expected for a layer experiencingonly mechanical thickening. This is because, for su�ciently small P , horizontal short-ening is slow enough that isotherms move downward more rapidly due to cooling thanthey do because of thickening. Because the velocity of the uid at the location of agiven isotherm is measured and not the vertical motion of of the isotherm itself, themeasurement of w000 is still that of the thickening layer, given by (3:12), where h is thedepth of the given isotherm. This velocity measurement increases with time, however,because isotherms move downward due to cooling according to (3:14), causing w000 tobe measured at increasingly larger values of h. In short, cooling causes the samplingpoint (a given isotherm) to move to deeper locations within the uid, locations wherethe uid velocity given by (3:12) is greater. The measured value of the downwardspeed thus changes with time according to:dwdt = @w@h @h@t = _�xx2�h = 2�h2w (3.24)where (3:12) gives @w=@h and (3:14) gives @h=@t. By analogy to (3:4), (3:24) isan expression for exponential growth with growth rate q = 2�=h2. When madedimensionless using _�xx, this growth rate can be simpli�ed to q000 = 2=P . This relationapproximates the measured values of q000s for P < 1 (Figure 3.2), meaning that verticalthermal di�usion dominates in this range.At small values of P , measured growth rates become negative (Figure 3.2). Thisoccurs because the layer is convectively stable (Ra1 < 100 and Ra3 < 100), so thathorizontal thermal di�usion causes perturbation amplitudes to decrease with time. If87
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Figure 3.2: Plot of the initial dimensionless \growth rate," q000 = q= _�xx, as a functionof P , which is varied by varying _�xx. Here q000 is determined by measuring the initialslope of a plot of ln(w000s ) versus t000, where time is made dimensionless using t000 = t _�xx.Theory predicts that q000 � 1 if the depth of isotherms increases solely because ofhorizontal shortening, which is observed for P > 10. If isotherms deepen due tocooling from above, theory predicts q000 � 2=P , which is observed for P < 1 (thinsolid line). At su�ciently small P , q000 < 0 because horizontal thermal di�usioncauses perturbations to decrease in amplitude faster than shortening thickens thelayer. Growth rates are calculated as described in the text for a set of parametersthat yield Ra3 = 26000Z 020 F3. The maximum value of Ra3 is then 0.7 for Z 00 = 9:54%and r = 10. The maximum value of Ra1 is 0.7 for this same curve at P � 104. Thus,measured growth rates should only be a�ected by horizontal shortening and thermaldi�usion because both Ra1 and Ra3 are below their critical values for convectiveinstability. 88



horizontal strain-rates, expressed by P , are su�ciently small, this leads to negativemeasurements of the growth rate, as Conrad and Molnar [1999] found for convectiveinstability.3.4.3 Convective Instability and Horizontal ShorteningA layer undergoing horizontal shortening may also deform due to gravitational in-stability. If Ra3 > 100, perturbations grow super-exponentially with time, at leastafter the e�ective viscosity is governed by strain-rates associated with the growinginstability. If background strain-rates are larger than those induced by the instability,however, horizontal shortening induces a background Newtonian viscosity given by(3:3) that should promote initially exponential growth [Molnar, Houseman and Con-rad, 1998]. For still larger imposed strain-rates, uniform thickening may overwhelmeither the exponential or super-exponential growth associated with gravitational in-stability.A transition from super-exponential to exponential growth of perturbations isthus expected at some imposed background strain-rate. The downward speed of aperturbation growing super-exponentially is given by (3:8) if n = 3 and should beindependent of _�xx. The downward speed associated with exponential growth is givenby (3:7) and increases with _�2=3xx because the e�ective viscosity given by (3:3) for n = 3is proportional to _��2=3xx . The ratio of these two speeds is proportional to the ratioRa1=Ra3 and is given by:Ra1Ra3 = 3 3B�g�T0Z!2 F1F3 _�2=3xx � w1w3 (3.25)Thus, large values of _�xx create large Ra1=Ra3, which favors exponential growth.Conversely, if _�xx is small, perturbations should grow super-exponentially.Both types of growth can be demonstrated by plotting ln(w0), where w0 is the di-mensionless downward speed of the T 0 = 0:9 isotherm, as a function of the dimension-less time, t0. As discussed above, if growth is exponential, this curve should be linear,with slope equal to the dimensionless exponential growth rate, q0. For Ra1=Ra3 = 1089



the approximately linear initial relationship between ln(w0) and t0, with an initialslope of 0.19 (Figure 3.3), agrees with measurements of q0 � 0:2 made by Conradand Molnar [1999] for Newtonian viscosity if Ra1 > 100. Thus, for Ra1=Ra3 = 10, aperturbation initial grows exponentially with time. Later, the slope of this curve inFigure 3.3 increases, presumably because super-exponential growth begins to becomeimportant.For Ra1=Ra3 = 1, a plot of ln(w0) versus t0 does not include an initial linearsegment, but instead the slope rapidly increases with time (Figure 3.3). Growthin this case is super-exponential and the slope of a tangent to the curve of ln(w0)versus t0 gives a measurement of the \instantaneous" growth rate at a given time.The above theory predicts the value of this growth rate for a given perturbationamplitude. Taking the time derivative of (3:8), nondimensionalizing using the timescale for exponential growth in (3:5), and then simplifying using the de�nitions ofRa1 and Ran in (3:20) and (3:21) yields:dw0ndt0 = nCnRanRa1w0n (3.26)Thus, the initial \instantaneous" slope of a plot of ln(w0) versus t0, denoted here asq00, should be equal to nCnRan=Ra1. For Ra1=Ra3 = 1, a measurement of this initialslope using the �rst few data points gives q00 = 0:45 (Figure 3.3). This is larger thanthe predicted value of nCnRan=Ra1 = 0:27, calculated using C = 0:45 [Conrad andMolnar, 1999], by nearly a factor of two. It is di�cult, however, to �t a tangent to aset of points that are not linear, so perhaps an exact match to the theory should notbe expected.The transition from super-exponential to exponential growth can now be foundby observing how measurements of q00 depend on Ra1=Ra3 (Figure 3.4). For largeRa1=Ra3 and exponential growth, the measured initial slope should be constant andequal to q00 � 0:2 (Figure 3.4) [Conrad and Molnar, 1999]. Although these mea-surements depend somewhat on perturbation size and begin to increase with increas-ing strain-rate for Ra1=Ra3 > 100, measured values of q00 � 0:2 are evident for90
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2 < Ra1=Ra3 < 100. For small Ra1=Ra3, super-exponential growth should dominateeven in initial stages. Indeed, for Ra1=Ra3 < 2 the measurements of q00 follow thecurve for nCnRan=Ra1 (Figure 3.4), as predicted by (3:26). These measured valuesare systematically larger, by about a factor of two, than the predicted values, as foundfor a single example in Figure 3.3, and can be attributed to the di�culty of measuringthe true initial slope. The change in the dependence of q00 on Ra1=Ra3 in Figure 3.4 in-dicates that the transition between super-exponential and exponential growth occursfor Ra1=Ra3 � 2. This value is independent of Z 00 and the temperature-dependenceof B (Figure 3.4).At su�ciently rapid background strain-rates, uniform thickening of the layer oc-curs faster than the gravitational instability grows. Thus, another transition, thisone from exponential growth to uniform thickening, should occur as strain-rates in-crease. Again, this transition can be found by �rst taking the ratio of the speeds formechanical thickening, ws, and exponential growth, w1, which can be simpli�ed to:w1ws � Ra1P Z 00 (3.27)This ratio depends on the perturbation size Z 00 because the only important dimensiona�ecting ws in (3:12) is the layer thickness, but w1 also increases with the size of theperturbation, as in (3:7). Thus, layers perturbed with di�erent amplitudes shouldexperience a transition from exponential growth to thickening at di�erent values ofRa1=P .To see where thickening becomes important, measurements of q00, the \instanta-neous" initial growth rate discussed above, are plotted a function of Z 00Ra1=P (Fig-ure 3.5). If shortening is the most important growth mechanism, the downward speedat the base of a layer is given by ws in (3:12). Taking the time derivative of (3:12),nondimensionalizing using (3:5), and simplifying using the de�nitions of Ra1 and Pin (3:20) and (3:22) yields: dw0sdt0 = PRa1w0s (3.28)Thus, if the layer grows only by thickening, q00 = P=Ra1. Measured values of q0092
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behave in this way for Z 00Ra1=P < 0:5 (Figure 3.5), for the three di�erent initialperturbation amplitudes. For Z 00Ra1=P > 0:5, measured growth rates trend towardq0 � 0:2. For small initial perturbations such as Z 00 = 0:01, growth rates may besmaller than q0 � 0:2 even for Z 00Ra1=P > 0:5 (Figure 3.5), indicating that horizontalshortening still inuences growth.The transition between exponential and super-exponential growth, determinedfrom Figure 3.4 to occur atRa1=Ra3 � 2, can also be represented in terms of Z 00Ra1=Pand observed in Figure 3.5. By solving for the strain-rate at which Ra1=Ra3 � 2and inserting this expression into the de�nition of Z 00Ra1=P given in Table 3.1, it ispossible to rewrite Ra1=Ra3 � 2 as Z 00Ra1=P � 3:67F1qF1=F3. Using the valuesof F1 and F3 given by Conrad and Molnar [1999], the transition from exponential tosuper-exponential growth can be estimated to occur at Z 00Ra1=P � 5. This transitionis evident Figure 3.5, and is, coincidentally, nearly independent of the temperaturedependence of B across the layer.3.4.4 SummaryThree dimensionless quantities, Ra1, Ran, and P , together with the initial dimen-sionless perturbation size, Z 00, can be used to determine the mode of deformationthat occurs in a cold thickening boundary layer with non-Newtonian viscosity andpower-law exponent n = 3 (Table 3.1). If Ra3 > 100, the instability may growsuper-exponentially, but only if imposed strain-rates, _�xx, are small enough thatRa1=Ra3 < 2 (Figure 3.4), or alternatively Z 00Ra1=P > 5 (Figure 3.5). If the im-posed strain rate is large enough that Z 00Ra1=P < 0:5 (Figure 3.5), or alternativelyRa1=Ra3 > 100 (Figure 3.4), mechanical thickening of the layer dominates the down-ward advection of isotherms (Figure 3.5). Intermediate imposed strain-rates lead toexponential growth of perturbations, as long as Ra1 > 100.94
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Table 3.1. Summary of Dimensionless Quantities (for n = 3)Description of Dimensionless Quantity Critical Values and Dominant Mode of GrowthRa1 = �g�T0h3�Bm F1 _�2=3xxCompares exponential growthand thermal di�usion Ra1 > 100 Exponential GrowthRa1 < 100 No GrowthRa3 = ��mg�T03Bm �3 h3Z2� F3Compares super-exponentialgrowth and thermal di�usion Ra3 > 100 Super-Exponential GrowthRa3 < 100 No GrowthP = _�xxh2�Compares mechanical thickeningand thickening due to cooling Applies if Ra1 < 100 and Ra3 < 100P > 1 Mechanical ThickeningP < 1 Thickening due to CoolingRa1Ra3 = 3 3B�g�T0Z!2 F1F3 _�2=3xxCompares exponential growthand super-exponential growth Applies if Ra1 > 100 or Ra3 > 100Ra1Ra3 < 2 Super-Exponential Growth2 < Ra1Ra3 < 100 Exponential GrowthRa1Ra3 > 100 Mechanical ThickeningZ 0Ra1P = �g�T0h�Bm F1 _��1=3xxCompares exponential growthand mechanical thickening Applies if Ra1 > 100 or Ra3 > 100Z 0Ra1P < 0:5 Mechanical Thickening0:5 < Z 0Ra1P < 5 Exponential GrowthZ 0Ra1P > 5 Super-Exponential Growth
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3.5 Transitions Between Mechanisms of Instabil-ityThe dimensionless quantities Ra1, Ra3, and P depend on the layer thickness h, andthus increase as the layer thickens with time. The measure of instability Ra3 alsoincreases as gravitational instability grows because it depends on the perturbationamplitude Z. As a result, an unstable layer should experience transitions betweendi�erent types of deformation as increases in h and Z cause Ra1, Ra3, and P toencounter the \critical" values described above and in Table 3.1.As an example, consider convective instability at the base of a layer perturbedinitially with amplitude Z 0 = 4:88%, r = 100, and choices of _�xx and other parameterssuch that Z 0Ra1=P � 0:7. As noted in Figure 3.5 and shown by a plot of ln(w0) versust0 (Figure 3.6a), such a layer undergoes a combination of Rayleigh-Taylor growthand horizontal shortening such that q0 = 0:12, where time is made dimensionlessusing (3:5). This value is smaller than the value of q0 � 0:2 appropriate for purelyexponential growth. As discussed above and shown in Figure 3.5, however, q0 < 0:2for initial perturbation amplitudes that are su�ciently small because shortening stillinuences growth. Thus, in the example shown in Figure 3.6a, isotherms are initiallyadvected downward in part by uniform thickening of the layer.As the perturbation amplitude Z 0 increases with time due to Rayleigh-Taylorgrowth, the quantity Z 0Ra1=P also increases, making deformation of the layer lessinuenced by mechanical thickening (Figure 3.5). In fact, transition to exponentialgrowth occurs as the perturbation amplitude nears Z 0 � 10% and Z 0Ra1=P nears 1.4(Figure 3.6b), seen also in the change in slope near t0 = 2 (Figure 3.6a). The newmeasured growth rate of q0 = 0:26 is larger than expected for exponential growth.Because the layer has thickened by about 30% before exponential growth becomesdominant, however, the thickness h used in (3:5) to make time dimensionless shouldbe increased by a factor of 1.3, making the value of 0.26 consistent with the predicteddimensionless growth rate of q0 = 0:2 [Conrad and Molnar, 1999], and that observedin Figure 3.5 for Z 0 = 10% and Z 0Ra1=P � 1:4.97
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When perturbation amplitudes become su�ciently large that Ra3 > 100 andRa1=Ra3 < 2 (or if Z 0Ra1=P > 5), super-exponential growth of perturbations isfaster than exponential growth. In Figure 3.6, where time is nondimensionalizedusing the time scale for exponential growth given by (3:5), growth becomes faster thanexponential for t0 > 6, the time at which Z 0Ra1=P � 5 (Figure 3.6b), consistent withthe transition in Figure 3.5. This same time is marked in Figure 3.7 at t00 � 840, wheretime is nondimensionalized using the time scale for super-exponential growth given by(3:9). For t00 > 840, the plot of w00(�2=3) versus t00 is approximately linear, with slopeindicating a growth parameter of C = 0:29 (Figure 3.7a). This transition to super-exponential growth occurs when Ra1=Ra3 becomes less than about 2 (Figure 3.7b),the critical value of this ratio in Figure 3.4. The measured value of C = 0:29 issmaller than the value of C � 0:4 measured by Conrad and Molnar [1999]. Thisdiscrepancy is exacerbated by the fact that the layer has thickened by about 70%when super-exponential growth begins, meaning that this measured value shouldbe reduced further by a factor of (1:7)1=n = 1:2, as determined by the relationshipbetween h and C in (3:8). Conrad and Molnar [1999], however, measured C usingan initial perturbation amplitude only 10% of h. Here super-exponential growth ismeasured from a layer that has been previously distorted at large amplitudes by boththickening and exponential growth. If the resulting perturbation structure is notoptimal for growth, these perturbations might grow more slowly than those measuredby Conrad and Molnar [1999].For a thickening unstable layer, the dominant mode of deformation progressesfrom exponentially increasing mechanical thickening, to faster exponential growth ofa gravitational instability, and �nally to still faster super-exponential growth of thisinstability. Depending on initial conditions, these three types of deformation willevolve from one to the next as the layer thickens and perturbations grow. The scalinganalysis developed above for an initially perturbed layer can be used to predict theapproximate time-dependent evolution of a thickening unstable layer that experiencestransitions between di�erent styles of thickening and growth as it evolves.100



3.6 The Evolving Thermal State of an UnstableLayerIf mechanical thickening of mantle lithosphere generates convective instability, thelithosphere's low viscosity basal portion will be removed in an event whose time de-pendence is described above. The colder, more viscous shallow lithosphere may alsobe unstable, but on time scales longer than those that apply to the initial lower litho-sphere instability [Molnar, Houseman and Conrad, 1998]. Thus, convective erosionat the lithospheric base should continue at progressively slower rates until the layeris thin enough to be convectively stable, as de�ned by Ra3 < 100. Complete convec-tive stability, however, is not likely to be achieved for billions of years following aninitial instability [Conrad and Molnar, 1999], perhaps making stability geologicallyunimportant. Instead, the actual amount of material removed by convective instabil-ity and the subsequent convective erosion depends on the time scale relevant to thegeologic process that is being studied.Previous studies of convective instability [e.g., Conrad and Molnar, 1999; Molnar,Houseman and Conrad, 1998] extrapolate the analysis for a single downwelling insta-bility to the ongoing convective erosion of a layer afterwards. As a result, they do notaccount for the ongoing thermal evolution of the layer due to heating by the inuxof hot asthenosphere from below, or additional cooling from above. In addition, theyignore the possible role that ongoing horizontal shortening may play in continuingto thicken the layer. To study the evolution of mantle lithosphere after its base isconvectively removed, calculations similar to those described above are extended fortimes beyond this initial event.3.6.1 Additional Numerical CalculationsIn the lithosphere, shortening, and therefore convective instability caused by short-ening, occurs at convergent zones between large plates of nearly constant thickness.To consider durations of convergence long enough to allow large �nite shortening, I101



extend the width of the �nite element grid to 6:20h, three times that used in thecalculations above. The wider grid allows the instability to occur farther from theright edge where imposed boundary conditions generate shortening, and thus shoulddiminish the inuence of these boundary conditions on the evolution of the shorteningregion after the instability occurs. Shortening is permitted only in the left one-thirdof the grid by adding uniform velocity boundary conditions to the top surface of therightmost two-thirds of the grid. Thus, at the surface, the horizontal velocity tapersunformly from zero to �v on 0 < x0 < 2:07 and is equal to �v on 2:07 < x0 < 6:20.The other boundary conditions are the same as those used above.The imposed horizontal shortening causes the unstable layer to thicken at a ratethat can be expressed by P using (3:22) as a multiple of the thermal di�usion timescale. Perhaps a more meaningful expression for the thickening rate is the time fora layer's thickness to increase by 100%. In these calculations, a doubling of layerthickness can be achieved by collapsing a region of width 2L into a region of widthL, which corresponds to horizontal shortening of 50%. If L is the width of theshortening region and material is brought into this region with velocity v, then thehorizontal strain-rate is _�xx = v=L and 100% thickening is achieved after a timet100 = L=v = 1= _�xx. Using (3:22), t100 can be written in terms of P :t100 = 1_�xx = h2P� (3.29)Later, it will be useful to make time nondimensional using the time scale for expo-nential growth. Applying (3:5) and simplifying yields:t0100 = Ra1P (3.30)Values for P and Ra1 are given below so that t0100 can be calculated using (3:30).Sixteen calculations are performed, for four di�erent temperature dependences ofviscosity, given by values of r of 1, 10, 100, and 1000, and for four di�erent shorteningrates, which yield values of P of 1.5, 4.8, 15, and 48. Because the stability parameterRa1 depends on strain-rate, as shown by (3:20) and (3:3), layers with larger values102



of P , and thus larger strain-rates, have larger Ra1, making them convectively moreunstable. To study layers that are inherently stable when subject to low shorteningrates, but that become unstable when shortening rates increase, the strength param-eter Bm is chosen so that a layer shortening with P = 4:8 has a value of Ra1 near thecritical value of 100. Because layers with larger r, and therefore smaller \availablebuoyancy" parameter F1, have a diminished tendency toward convective instability(as shown by (3:20)), the chosen values of Bm are smaller for layers with larger r.Thus, despite di�erences in r, layers are equally unstable at a given shortening rate.The stability parameter Ra1 is thus varied only by changing the shortening rate,which is speci�ed here by a change in P .Because horizontal shortening is only imposed between x0 = 0 and 2:07, thickeningin this region generates a perturbation to the initially unperturbed error-function tem-perature pro�le. This perturbation then should grow unstably, either exponentiallywith time if shortening is su�ciently rapid that Ra1 > 100, or super-exponentiallywith time once this perturbation becomes large enough that Ra3 > 100. Either way,localized thickening eventually leads to a perturbation that grows unstably. Thisinitial downwelling eventually removes the basal portion of the layer, as shown forr = 100 by the locations of isotherms in Figure 3.8 (black lines). Typically, down-welling persists following the initial removal event, and continues to remove coldmaterial from both the upper reaches of the surface layer, as well as new materialthat is brought in from the side. This downwelling appears to be a permanent featureand eventually reaches a steady state in which it removes all new cold material thatis brought in by the imposed horizontal shortening (Figure 3.8, grey lines).3.6.2 The Evolution of DownwellingTo study the instability's development over time, I record the locations and downwardspeeds of the nine isotherms between T 0 = 0:1 and T 0 = 0:9 on left side of the box,where the instability is a maximum. I also record the depth of these isotherms as theyare advected into the right-hand side of the box. The amplitude of the perturbationto each isotherm, Z 0, can be measured by taking the di�erence in an isotherm's depth103



−5

−4

−3

−2

−1

0
z/

h c

a)     P = 1.5

Ra
1
 = 39

t′ = 10.4

t′ = 21.0

b)     P = 4.8

Ra
1
 = 86

t′ = 10.1

t′ = 23.6

0 1 2 3
−5

−4

−3

−2

−1

0

z/
h c

x/h
c

c)     P = 15

Ra
1
 = 180

t′ = 9.3

t′ = 25.0

0 1 2 3
x/h

c

d)     P = 48

Ra
1
 = 400

t′ = 8.4

t′ = 28.1104



Figure 3.8: Pro�les of temperature for a convective instability growing from a thick-ening thermal boundary layer with temperature-dependent, non-Newtonian viscosityfor which n = 3 and r = 100. Only the left half and the upper 60% of the entire�nite element calculation is shown. Growth is initiated by imposing velocity bound-ary conditions on an initially unperturbed error function temperature pro�le. Theseboundary conditions generate horizontal shortening between x0 = 0 and x0 = 2:06,as described in the text. Thus, the layer thickens in this region, which generates alateral variation in the temperature �eld from which convective instability can grow.Shown are isotherms for T 0 = 0:1 through 0:9, with colder temperatures closer to thesurface. Sets of isotherms for di�erent shortening rates are shown in parts (a) through(d), where the di�erence in shortening rates is parameterized by P , but also a�ectsRa1 by changing the background viscosity of the layer. In each case, two times areshown, where time is nondimensionalized using the time scale for exponential growthgiven by (3:5). The dark contours show a time during the super-exponential phaseof the instability, in which a \blob" of material is rapidly descending into the lowerhalfspace. The light contours show the instability at the end of the calculation, whencold material is owing downward from the base of the instability at a nearly steadyrate.between the left and right hand sides of the grid, and then normalizing this quantityby the original depth of that isotherm. To determine the fraction of the downwardspeed that is not due to the initially-imposed velocity �eld associated with horizontalshortening, the initial speed of material containing a given isotherm is subtractedfrom its measured value. Because the layers are initially unperturbed, this initialspeed should result almost entirely from horizontal shortening. The velocity thatremains, termed w0corr here, must be associated with either gravitational instabilityor the acceleration of mechanical thickening beyond its initial rate (remember thatws in (3:12) grows exponentially with time).A comparison of the expressions for w1 and wn in (3:7) and (3:8), shows that ifgravitational instability dominates, a plot of ln(w0corr) versus ln(Z 0) should yield a lin-ear relationship with slope equal to the power-law exponent, n, that depends on thestyle of growth: n = 1 for exponential and n > 1 for super-exponential growth [Mol-nar, Houseman and Conrad, 1998]. If mechanical thickening dominates, subtractingthe initial velocity from (3:12) yields wcorr = _�xxZ if h(t) = h(t = 0) + Z(t). This105



relation should, like exponential growth, yield a slope of unity in a plot of ln(w0corr)versus ln(Z 0). Such a plot (Figure 3.9) shows a slope near unity for the coldestisotherms, indicating exponential growth of perturbations or mechanical thickeningthroughout. For the hotter isotherms, a change in slopes indicates a transition tosuper-exponential growth of perturbations (slope of m = n = 3). For all of the calcu-lations shown in Figure 3.9, the dimensionless quantity Z 0Ra1=P > 0:5 for Z 0 > 6%(ln(Z 0) > �2:8 in Figure 3.9). This implies that exponential growth (rather thanhorizontal shortening) dominates prior to the transition to super-exponential growth,at least for the hotter isotherms. Following this period of super-exponential growth,curves for the hotter isotherms begin to oscillate due to an interaction with the baseof the �nite element grid (Figure 3.9), indicating that these isotherms have detachedfrom the cold surface layer.Thus, growth for the hotter isotherms is initially exponential, but that soon be-comes super-exponential and eventually leads to the removal of the basal portionof the layer. The time for this removal to occur once the super-exponential growthphase begins can be estimated using (3:11), where time is nondimensionalized using(3:9) for super-exponential growth. Changing this nondimensionalization to that ofexponential growth using (3:5) yields:t0b = 1(n� 1)Cn Ra1Ran (3.31)If n = 3, super-exponential growth begins when Ra1=Ra3 � 2. Using this value andC = 0:45, the time to the initial removal event can be estimated as t0b � 11, and isindependent of shortening rate. This is comparable to the times shown in Figure 3.8for the initial instability to become large (times associated with black curves), butallows no time for the development of perturbations prior to the initiation of super-exponential growth. The estimates of Ra1=Ra3 = 2 and C = 0:45 are, however,approximate. If insteadRa1=Ra3 � 1:5 is appropriate, as it seems to be in Figure 3.7b,t0b � 8, a value that is nearly as large as the times shown in Figure 3.8. Thus, theinitial removal event consists primarily of a super-exponential growth phase, but is106
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Figure 3.9: A plot of ln(w0corr) as a function of ln(Z 0) for each of the nine isotherms(solid lines, T 0 = 0:1 through 0:9) and for the four calculations shown in Figure 3.8(parts (a) through (d)). The colder isotherms have smaller initial velocities. Herew0corr = w0 � w0(t = 0) and Z 0 are measured as described in the text. As shownby taking the natural log of the expression for exponential growth of gravitationalinstability in (3:7) or the corrected expression for horizontal shortening (see text), aslope of m = 1 indicates that one of these two modes is dominant. By taking thenatural log of equation (3:8), a slope of m = 3 indicates super-exponential growth forpower-law creep with exponent n = 3. Dashed lines with slopes of 1 and 3 are shownfor comparison. Initially, all of the isotherms experience either exponential growth ofgravitational instability or mechanical thickening (slope of 1). Eventually, the hotterisotherms are removed by an event in which perturbations grow super-exponentiallywith time (slope of 3). These isotherms later cease their growth because they fallthrough the bottom of the box and begin a period of oscillatory behavior.107



preceded by a brief exponential growth phase, and perhaps an even briefer horizontalshortening phase. Because the dimensionless duration of super-exponential growthis independent of the shortening rate, the slightly shorter times for faster shorteningrate (larger P in Figure 3.8) can be attributed to the dependence of the exponentialgrowth phase's duration on shortening rate. If shortening is faster, less time is spentin the generation of perturbations large enough to produce Ra3 > 100, the conditionfor initiation of super-exponential growth.3.6.3 The Thermal State After Initial InstabilityThe amount of material removed by the initial instability can be estimated by observ-ing the number of isotherms that participate in the initial downwelling in Figure 3.8.For example, the bottom three isotherms are clearly involved in the downwelling forthe slowest shortening rate (Figure 3.8a). A fourth isotherm appears to join the in-stability for faster shortening (Figure 3.8d). Another way of determining how muchmaterial is initially removed is to estimate how many isotherms change their slopesfrom m = 1 to m = 3 in Figure 3.9. It is clear that the colder isotherms (smallerw0) do not change slope, except for a small, temporary, acceleration that occurs whenthe hotter isotherms begin their super-exponential phase. In each of the four casesshown in Figure 3.9, the hotter four isotherms change their slope signi�cantly, whileperturbations to the colder �ve isotherms continue with slopes near unity. The initialremoval event is also evident in a plot of the depth of each isotherm as a function oftime (Figure 3.10), and it is clear that between three and four isotherms are removedby it.A more quantitative estimate of the amount of material removed by the initialinstability can be obtained by examining the distribution of isotherms at the removaltime in Figure 3.10. In particular, the ratio of each isotherm's depth at a given timeto its initial depth de�nes a \thickening factor" that can then be used to comparethe relative deections of di�erent isotherms at various times. At the removal time,de�ned here to be the time in which the T 0 = 0:9 isotherm �rst encounters the bottomboundary of the �nite element grid, isotherms are typically separated into two groups.108
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ening rates (Figure 3.11). This estimate is supported by comparing the deectionof the T 0 � 0:7 isotherm to that of the other isotherms in Figure 3.10. The cuto�temperature for removal (Figure 3.11) is highly dependent on the temperature depen-dence of viscosity coe�cient, r, with nearly the entire layer being initially removedin the constant B case (r = 1), and only the bottom few isotherms being removedif r = 1000. As found above for r = 100, the amount of material removed in thisinitial removal event does not depend strongly on the rate of shortening. This is dueto the domination of the initial removal event by super-exponential growth, which,unlike exponential growth, does not depend on the shortening rate. Thus, the short-ening rate should not a�ect the amount of material removed in this initial instability,provided this rate is large enough to generate instability.3.6.4 The Thermal State After Prolonged ThickeningBecause these calculations extend beyond the initial instability, they can be used toexamine deformation of the unstable layer after the initial removal event. As theinitial downwelling passes through the base of the �nite element grid, the negativethermal buoyancy associated with the downwelling isotherms is suddenly removed,which causes these isotherms to retreat rapidly. This response is typically followedby another advance of downwelling, and oscillatory behavior develops (Figure 3.10)until it is damped into a steady state downwelling ow (Figure 3.8). Several colderisotherms that do not participate in the initial removal event are eventually drawninto this later downwelling ow (Figure 3.8). The slope of m � 1 in Figure 3.9indicates that they descend either by exponential growth of gravitational instabilityor by continued mechanical thickening.A layer's tendency toward exponential growth of gravitational instability is mea-sured by Ra1, which, because it depends on the layer's background viscosity, and thusits background shortening rate, increases with P . Thus, faster shortening rates causeboth P and Ra1 to increase (remember that, for a given value of r, Ra1 is changedonly by varying the shortening rate). Thus, if the observed long-term instability isdue to exponential growth, downwellings should be more substantial at larger strain-111



rates because greater Ra1 enhances instability. This is indeed what the calculationsshow. For example, if P (and thus Ra1) is small, only the bottom few isotherms aresigni�cantly deected at the end of the calculation (Figure 3.8a), but nearly all ofthe dense layer is removed at fast shortening rates (Figure 3.8d). In addition, thecolder isotherms penetrate more deeply (Figures 3.9 and 3.10) at faster shorteningrates (larger P ).The same behavior, however, might also result from mechanical thickening ofthe cold part of the layer. The velocity boundary conditions force cold uid intothe right side of the �nite element grid and out through its bottom. If the coldsurface layer is in thermal steady state, this cold uid must be removed from thelayer by the persistent downwelling. In this light, it is not surprising that increasedshortening rates are associated with a more substantial downwelling that penetratesdeeper into the underlying uid. The depth of penetration of these isotherms canbe estimated by comparing the �nal depth of each isotherm to that isotherm's initialdepth. The average of this \deepening factor" for the isotherms that do not encounterthe bottom of the box at the end of the calculation provides a measure of how deeplya downwelling extends below the shortening region at the surface (Figure 3.12a).Downwellings are more substantial for rapidly shortening layers (expressed by P ),but the amount of material that participates in these downwellings depends onlyweakly on the temperature-dependence of viscosity (expressed by r). This indicatesthat these downwellings serve as a mechanism by which thickened material can becontinuously removed from a shortening layer. Although this process is generated byshortening, it is facilitated by the inherent gravitational instability of this material,which causes it to ultimately be removed by active downwelling.The gravitational removal of the basal part of the surface layer prevents it fromthickening into an overly unstable condition from which another transient instabilitycan develop. Thus, the persistent downwellings that follow prolonged shorteningare part of the steady-state behavior of a shortening layer. In the Earth, however,shortening cannot be expected to continue inde�nitely. If shortening ceased, some,at least, of the material protruding into the asthenosphere would presumably become112
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Figure 3.12: Similar to Figure 3.11, but showing the thermal properties of the steady-state persistent downwelling that removes material added to the layer by shortening.(a) shows the approximate depth to which this downwelling penetrates at the end ofthe calculations, expressed as a multiple of the original depth of the layer. This depthis calculated by taking the average of the factor by which each of the nine isothermsbetween T 0 = 0:1 and 0:9 deepens, excluding the isotherms that encounter the bottomof the box at that time. (b) shows the temperature of downwelling material at a depthequal to that of the original position of the T 0 = 0:9 isotherm. If shortening wereto stop at this point, material hotter than that shown in (b) would presumably beremoved. It is clear that the persistent downwelling advects cold material deeperinto the mantle if the shortening rate is higher (larger P ), and that the temperaturedependence of viscosity is of lesser importance.113



unstable, detach, and then be replaced by hotter material. The amount of materialthat might be removed can be estimated by measuring the temperature of the coldestmaterial that protrudes deeper than the original depth of the T 0 = 0:9 isotherm,taken to represent the base of the unstable layer. These temperatures are shownin Figure 3.12b for a downwelling in thermal steady-state. It is clear that coldermaterial is removed from more rapidly shortening layers (large P ), but that thetemperature of material removed is independent of the temperature-dependence ofviscosity. This is consistent with more rapid shortening producing more substantialpersistent downwellings, which are subject to removal once shortening stops.3.6.5 The Thermal State After 50% ShorteningGeological observations in severely shortened regions such as Tibet indicate thatthe total amount of horizontal shortening can reach 50% (shortening by a factorof two) [Le Pichon, Fournier, and Jolivet, 1992; Molnar, England, and Martinod,1993]. Horizontal shortening of this magnitude can be accommodated by a doublingof crustal thickness (100% thickening) in the shortening region, which generates sig-ni�cant buoyancy that resists further crustal thickening. This resistance causes theregion of active shortening to migrate to undeformed adjacent regions once horizontalshortening has reached about 50% [e.g., England and Houseman, 1986; England andSearle, 1986; Molnar and Tapponnier, 1978]. If the amount of horizontal shorteningis limited to 50%, the amount of time that dense mantle lithosphere is exposed tothe destabilizing e�ects of horizontal shortening is also limited. In this case, the per-sistent downwellings discussed above might not penetrate as deeply as they would ifallowed to grow inde�nitely.Because the dimensionless time to the initial removal event is a constant value ofabout 8, 50% shortening occurs well after the initial removal event for a slowly short-ening layer (Figure 3.10a), but the two may be nearly simultaneous if shortening israpid (Figure 3.10d). Thus, for the shortening rates studied, 50% shortening typicallyoccurs sometime after the initial removal event, but before the persistent downwellinghas grown to its full extent. To characterize the thermal state of the persistent down-114



welling at the time of 50% shortening, the depth of penetration of an isotherm atthe time t0100 is calculated and expressed as a multiple of the original depth of thelayer. This calculation is similar to the one performed above for the downwelling afterprolonged thickening, but includes only those isotherms that are not removed in theinitial removal event. Because, for r = 1, all isotherms participate (Figure 3.10), onlythe coldest three isotherms are used. The result (Figure 3.13a) shows that persis-tent downwellings are generally less substantial for 50% shortening than they are forprolonged shortening (Figure 3.12a), particularly at large strain-rates. In fact, theirdiminishment at large P means that for r > 10, the deepening factor has a nearlyconstant value between 3 and 4 (Figure 3.13a). Downwelling of this magnitude causesmaterial hotter than a dimensionless temperature T 0 between 0.3 and 0.4 to protrudedeeper than the original depth of the T 0 = 0:9 isotherm (Figure 3.13b). Thus, ifconvergence slows after shortening an unstable layer by 50%, the hottest 60 to 70%of downwelling uid should be removed. This fraction does not depend signi�cantlyon shortening rate or on the temperature dependence of viscosity.3.7 Application to the LithosphereThe above analysis shows that several styles of deformation are possible for a denselayer undergoing horizontal shortening, and that the particular style that a layerchooses depends on the values of the dimensionless quantities Ra1, Ra3, P , and Z 0.This analysis can now be applied to the mantle lithosphere to determine the typesof deformation that are possible as a result of shortening, and to characterize thechanges to the lithospheric structure that may result from this deformation. To dothis, parameter values relevant to the lithosphere must be estimated. These include�m = 3300 kg m�3, g = 9:8 m s�2, � = 3 � 10�5 K�1, and � = 10�6 m2 s�1. Ifthe mantle lithosphere varies in temperature between Ts = 800 K at the Moho andTm = 1600 K at its base, the temperature variation across the potentially unstablemantle lithosphere is T0 = Tm � Ts = 800 K.The rheology of mantle lithosphere is thought to be characterized by di�usion115
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Figure 3.13: Similar to Figure 3.12, but showing measurements taken at t100, the timefor 100% thickening (or 50% horizontal shortening) to occur. In this case, both the (a)depth of penetration of the persistent downwelling (given in units of the initial layerthickness) and the (b) temperature of material protruding deeper than the originaldepth of the T 0 = 0:9 isotherm depend only weakly on both the shortening rate givenby P and the temperature-dependence of viscosity given by r.116



creep, for which n = 1, at stresses lower that 0.1 to 1 MPa, and by dislocation creep,for which n = 3 to 3:5, at higher stresses [Karato, Paterson, and FitzGerald, 1986].Convective instability should be accompanied by stresses greater than this, favoringdislocation creep. Hirth and Kohlstedt [1996] propose that the mantle is \wet" below60 to 70 kmdepth, for whichKarato, Paterson, and FitzGerald [1986] deduced a powerlaw exponent of n = 3, an activation energy of Q = 420 kJ/mol, and a preexponentialfactor of A = 1:9�10�15 Pa s�3 for olivine. Using these parameter values, Conrad andMolnar [1999] estimate Bm = 1:9� 109 Pa s1=3. Hirth and Kohlstedt [1996], however,assign a power law exponent of n = 3:5 to wet olivine. As a result, considerableuncertainty is associated with Conrad and Molnar's [1999] estimate of Bm, which isaccommodated here by using n = 3 and allowing Bm to vary.The \available buoyancy" parameter Fn accounts for the temperature dependenceof B for a given temperature pro�le in a layer. Conrad and Molnar [1999] estimate itsvalue for wet dislocation creep by assuming an activation energy of Q = 420 kJ/mol.They �nd F3 = 1:3 � 10�4 for an error function temperature pro�le. If the strain-rates associated with horizontal shortening control the e�ective viscosity of the layer,this viscosity is constant with perturbation amplitude, meaning that the power lawexponent n = 1 is applicable. Following Conrad and Molnar [1999], F1 = 5:7�10�2 forthe error function temperature pro�le, which is slightly larger than that estimatedby Conrad and Molnar [1999] for n = 1, because their study uses parameters fordi�usion creep without horizontal shortening. If the temperature pro�le is not that ofan error function, estimates of the \available buoyancy" should be di�erent from thoseassumed here. This uncertainty is acceptable, however, because it can be absorbedby the uncertainty associated with the strength parameter Bm.As described above, the values of Ra1, Ra3, and P can be used to determinewhich of the above-described mechanisms should dominate lithospheric deformation.In particular, their \critical" values (Table 3.1) delineate transitions between di�er-ent styles of thickening and growth. By plotting the location of these transitions asa function of parameters that can vary, a \phase diagram" can be constructed thatshows the dominant style of growth in di�erent regions of the space de�ned by the117



variable parameters. An example diagram (Figure 3.14) shows the typical locationof boundaries between the four deformation styles, or \phases," in the space de�nedby the strength parameter Bm and the time t100, for 100% thickening to occur, whichde�nes the strain-rate according to (3:29). In this case, if both Ra3 < 100 andRa1 < 100, the layer is convectively stable, with mechanical thickening (MT) domi-nating if P > 1 and thickening by thermal di�usion (TD) dominating otherwise. IfRa1 > 100, horizontal shortening still dominates if Z 00Ra1=P < 0:5, otherwise pertur-bations grow exponentially (EG) with time for Ra1=Ra3 > 1 and super-exponentially(SEG) otherwise. The locations of these boundaries relative to dimensional valuesof Bm and t100 depend on the parameters used to calculate Ra1, Ra3, and P . As aresult, diagrams are constructed by plotting the locations of these \critical" valuesas functions of Bm and t100 for the lithospheric parameters given above, perturba-tion amplitudes of Z 00 = 10% (Figure 3.15) and Z 00 = 50% (Figure 3.16), and layerthicknesses of h = 25, 50, 100, and 200 km (parts (a) through (d) in Figures 3.15and 3.16).The boundaries between dominating styles of thickening or unstable growth changeas the mantle lithosphere thickens, or as perturbations to it grow. By considering howthese boundaries move due to changes in h or Z, the evolution of the mantle litho-sphere's thermal structure can be examined. Consider mantle lithosphere for whichZ 00 = 10%, Bm = 1010 Pa s1=3, h = 25 km, and t100 = 50 million years. Initially, sucha lithosphere grows most rapidly by cooling from above (Figure 3.15a). However, asit thickens, Ra1 increases, causing the transitional boundary of P = 1 to move to-ward larger values of t100. By the time the lithosphere is 50 km thick (Figure 3.15b),such mantle lithosphere grows most rapidly by horizontal shortening. Alternatively,if the shortening rate increases suddenly due to an acceleration of convergence at thesurface, t100 should suddenly decrease, causing a transition from thermal di�usion tohorizontal shortening as the most rapid mechanism for deformation (Figure 3.15a).The thickness of the mantle lithosphere should continue to increase, either bycooling from above or by horizontal shortening, until the lithospheric layer becomesconvectively unstable. In fact, it can be argued that continental lithosphere is prob-118
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to an inherent chemical buoyancy, as has been proposed for the continental \tecto-sphere" [e.g., Jordan, 1978; 1981; 1988]. If the erosion process involves convectiveinstability, then the continental lithosphere should be at or near its stability limit,which is given by Ra1 = 100 or Ra3 = 100.Consider mantle lithosphere that is tectonically stable (not shortening) and thathas grown to its stability limit, for whichRa3 = 100. The thickness of such lithosphereis given by the value of h that produces Ra3 = 100 for values of Z 00 and Bm appro-priate for the lower lithosphere (Figures 3.15 and 3.16). For example, if Z 00 = 10%,and the experimentally observed value of Bm � 109:1 Pa s1=3 applies, only mantlelithosphere thinner than � 25 km is stable to convection (Figure 3.15a). If mantlelithosphere thicker than this value can remain stable, Bm must be greater or Z 00 mustbe smaller. In fact, an order of magnitude increase in Bm is required to increase themaximum thickness of stable lithosphere to 100 km (Figure 3.15c). An increase inBm with lithosphere thickness is perhaps expected due to the pressure dependence ofdislocation creep [e.g., Karato and Wu, 1993]. In addition, it is possible that uncer-tainties in estimates for F3, or in the application of laboratory measurements of Bmto the lithosphere, could conspire to permit layers that are more than 100 km thickto be stable to small-scale convection at their base.If horizontal convergence is applied to a layer that is close to its stability limit(Ra3 = 100), gravitational instability can be initiated rapidly. An increase in thebackground horizontal strain rate, _�xx, corresponds to a decrease in the time to 100%thickening, given by t100 in (3:29). As shown in Figures 3.15 and 3.16, a su�cientlylarge decrease in t100 along the Ra3 = 100 curve causes exponential growth of pertur-bations to dominate deformation of the layer. For example, if Bm � 1010:1 Pa s1=3 andZ 00 = 10%, mantle lithosphere of thickness h = 100 km is stable to convection if short-ening is su�ciently slow that t100 > 80 Ma (Figure 3.15c). For t100 � 30 million years,as seems to characterize Tibet [Molnar, England, and Martinod, 1993], the lithosphereis gravitationally unstable, with perturbations growing exponentially with time (Fig-ure 3.15c). Once perturbations begin to grow, the region for which Ra3 > 100 (super-exponential growth of perturbations) begins to include larger values of Bm (compare121
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bations, causing the layer to move from a state in which horizontal shortening domi-nates to one in which super-exponential growth dominates. If Bm = 1010:1 Pa s1=3 andh = 100 km, but t100 decreases only to 100 million years, an increase in perturbationamplitudes due to horizontal shortening should still cause super-exponential growthrapidly to become dominant (compare Figures 3.15c and 3.16c). Alternatively, anincrease in layer thickness h due to mechanical thickening should cause a marginallystable layer to become unstable (compare the location of Bm = 1010:1 Pa s1=3 andt100 = 100 million years in Figures 3.15c and 3.15d).Once super-exponential growth begins, the time for the initial gravitational in-stability to remove the bottom part of the mantle lithosphere can be estimated bymaking t0b in (3:31) dimensional using (3:5), which for n = 3 can be written:tb = h2�Ra3 12C3 (3.32)Because super-exponential growth begins when Ra3 = 100, with C = 0:45 the removaltime can be written as tb = 0:055h2=�. With � = 10�6 m2 s�1, tb becomes a functionof only the layer thickness, h (Figure 3.17). All of the other parameters that a�ectgrowth are eliminated from this expression by the assumption that super-exponentialgrowth begins when Ra3 = 100. If, as discussed above, a phase of exponential growthor shortening precedes super-exponential growth, its duration should be short andthus should not signi�cantly a�ect this estimate of tb.As discussed above, the amount of material removed by the initial instability de-pends primarily on the temperature-dependence of viscosity. If, as is likely to bethe case, viscosity varies by a factor of more than 100 across the mantle lithosphere,at most only the hottest 30% of the mantle portion of the lithosphere is removed(Figure 3.11). If shortening continues after this time, however, the ongoing additionof cold material to the lithosphere is balanced by a persistent downwelling that re-moves this extra cold mantle lithosphere from the shortening region. If shorteningis su�ciently fast and is allowed to occur inde�nitely, this downwelling is capable ofcausing all but the coldest 10% of the mantle lithosphere to be advected into the man-123
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Figure 3.17: Plot of the time, tb, for the initial instability to remove the base of themantle lithosphere, and of the time, t100, for 100% thickening of the lithosphere (or50% horizontal shortening at the surface) to occur. Both tb and t100 are calculated asdescribed in the text as a function of the thickness, h, of the mantle lithosphere. The100% thickening time depends on the shortening rate, expressed here in terms of P .tle once shortening stops (Figure 3.12b). Because this persistent downwelling resultsmore from mechanical thickening than from a balance of viscous and gravitationalbody forces, the amount of material that participates in this downwelling is nearlyindependent of the temperature-dependence of viscosity (Figure 3.12b).The total amount of lithospheric shortening that occurs on the Earth may belimited to 50%. As a result, the amount of time during which a persistent downwellingcan develop may be limited as well. The time to 50% shortening (100% thickening)can be compared to the time for the initial instability to occur by taking the ratio oft100 and tb using (3:29) and (3:32). Simplifying using Ra3 = 100 and C = 0:45 showsthat t100 = tb=(0:055P ). Thus, the time to 50% shortening is some multiple of the124



initial removal time, where this multiple depends on P (Figure 3.17). If shorteningis su�ciently fast that P > 1=0:055 � 18, mechanical thickening of the layer shouldoccur more rapidly than convective instability, meaning that an estimate of tb isprobably not relevant. As shown in Figure 3.17, P > 18 requires 100 km thick mantlelithosphere to double in thickness in only 15 million years, and thinner lithosphereto shorten even more rapidly. This is faster than the � 30 million years expectedfor shortening by 50% in Tibet [Molnar, England, and Martinod, 1993], but implieshorizontal strain-rates of � 10�15s�1, which are perhaps not unreasonable for otherconvergent zones such as the Transverse Ranges of California [e.g., Houseman et al.,1999].On the other hand, if shortening is slow enough that P < 18, then t100 > tb,meaning that 50% shortening occurs after the initial removal event. In this case,only the hottest 60% of material is advected into the mantle (Figure 3.13b). Becausethe persistent downwelling removes material that is advected into the downwellingregion, its amplitude depends on the amount of shortening that occurs. Thus, forshortening of 50%, the amount of material that participates in the downwelling is aconstant. This amount (the hottest 60%, corresponding to � 500�C of temperaturevariation if the mantle lithosphere accounts for � 800�C) is a larger fraction of thelithosphere than is observed to participate in the initial instability (at most the hottest30%, or � 250�C), making the persistent downwelling a potentially more importantconsequence of shortening than the initial removal event.A possible limitation of this analysis is that it is performed in only two dimen-sions, meaning that downwellings necessarily are sheet-like structures. This limitationis perhaps acceptable because this study is designed to treat instability that is gen-erated by horizontal shortening, which, for convergence between two large plates, isinherently a two-dimensional process. Because, however, instabilities grow exponen-tially or super-exponentially with time, small lateral di�erences in growth rate can berapidly ampli�ed, causing a downwelling sheet to have a three-dimensional structure,which could complicate the application of these results to the mantle. In addition,these results treat dislocation creep, for which n � 3. Thus, regions of low strain-rate125



resist ow because their e�ective viscosity is high. It is possible that ow in theasthenosphere is instead Newtonian, with a viscosity as low as 1019 Pa s [e.g., Hager,1991]. In this case, the viscosity beneath the lithosphere would not be dictated bythe background shortening rate, and thus would allow the lower lithosphere to beremoved more rapidly, even at lower shortening rates than the above analysis sug-gests. On the other hand, deection of the Moho is also ignored, which, if driven byconvective instability, should tend to resist convective instability because it is gravita-tionally unfavorable [e.g., Neil and Houseman, 1999]. Moho deection may, however,also promote convective instability by generating large-amplitude perturbations tothe mantle lithosphere's thermal structure.3.8 ConclusionsThe theory and numerical experiments described above examine the deformation ofunstable mantle lithosphere that is undergoing active shortening. The thermal struc-ture of mantle lithosphere evolves due to four processes. In the absence of convectiveinstability, mantle lithosphere thickens either by horizontal shortening or by cool-ing from above. Convective instability manifests itself either by exponential growthof perturbations, which requires lithospheric viscosity to be set by the backgroundshortening rate, or by super-exponential growth of these perturbations, in which caseviscosity is set by the strain-rates associated with instability. The conditions underwhich each type of deformation is dominant can be determined by comparing theamplitudes of the dimensionless parameters Ra1, Ra3, P , and Z 00, which are de�nedfor this purpose (Table 3.1).In applying these results, mantle lithosphere is assumed to have cooled su�-ciently that Ra3 � 100, meaning that it is nearly convectively unstable. In thiscase, horizontal shortening can easily initiate convective instability by increasing theamplitude of perturbations, either directly through non-uniform thickening, or bylowering the background viscosity so that perturbations begin to grow exponentiallywith time. Once super-exponential growth begins, the time for removal is approxi-126



mately tb = 0:055h2=�. Thus, for mantle lithosphere 100 km thick, the initial removalevent occurs 17 million years after shortening initiates super-exponential growth. Forstrongly temperature-dependent viscosity, at most only the hottest 30% of the mantlelithosphere is involved in this event.As shortening of the lithosphere continues, downwelling of lithospheric materialpersists after the initial removal event. This downwelling removes material that iscontinually being added to the layer by shortening, and thus is more substantial forlarger shortening rates. If, however, the total amount of shortening is limited to50%, corresponding to thickening of 100% (doubling of crustal thickness), shorteningmay cease before this downwelling can penetrate into the mantle to its maximumpossible depth. Because this persistent downwelling removes material added to thelithosphere by shortening, its amplitude depends on the amount of shortening thatoccurs. For 50% shortening, the hottest 60% of mantle lithosphere participates in thedownwelling, which extends to depths about 3 to 4 times the lithospheric depth. Asa result, the downwelling that results from mechanical thickening of the layer is moresubstantial than the downwelling associated with the initial removal event.Once mechanical thickening stops after achieving 50% shortening, the persistentdownwelling that extends into the mantle beneath the shortening region is no longerreplenished by the addition of lithospheric material above it. Because it is a thinfeature, as evidenced by the depth (3 to 4 times h) to which only the lower 60% ofthe mantle lithosphere extends (corresponding to temperatures between about 1100 Kand 1600 K), it is not likely to survive once horizontal shortening stops. If this\�nger" of cold lithosphere is removed, either due to its own gravitational instabilityor to mantle shear, its replacement by hot asthenosphere should cause signi�cantuplift at the surface, which could lead to rapid mountain building. The timing ofsurface uplift should coincide approximately with the end of a period during which50% shortening is achieved. For Tibet, 50% shortening (doubling of crustal thickness)began at 40 to 50 Ma and is thought to have taken 30 to 40 million years to complete.Rapid uplift at the surface is inferred to begin at approximately 8 Ma [Harrison etal., 1992; Molnar, England, and Martinod, 1993], after shortening had ceased within127



the interior of Tibet. This pattern is consistent with the gradual building of a coldprotrusion into the mantle by horizontal shortening and rapid surface uplift associatedwith its removal once shortening stops.Acknowledgments. This work was supported in part by National Science Foundationgrant EAR-9725648, and by a National Science Foundation Graduate Research Fellowship.I thank B. Hager for helpful comments and P. Molnar for suggestions and encouragementthroughout the preparation of this manuscript that greatly improved its content and clarity.
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