Supporting Information for "Convective self-compression of cratons and the stabilization of old lithosphere"

 1 Jyotirmoy Paul

²Clinton P. Conrad

^{3,4,5}Thorsten W. Becker

 $^{6}\mathrm{Attreyee}$ Ghosh

¹Bayerisches Geoinstitut, Universität Bayreuth

²Centre for Earth Evolution and Dynamics (CEED), Department of Geosciences, University of Oslo

 $^3 \mathrm{Institute}$ for Geophysics, Jackson School of Geosciences, The University of Texas at Austin

⁴Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin

⁵Oden Institute for Computational Engineering & Sciences, The University of Texas at Austin

 $^{6}\mathrm{Centre}$ for Earth Sciences, Indian Institute of Science, Bangalore

Contents of this file

1. Figures S1 to S2

January 12, 2023, 7:40am

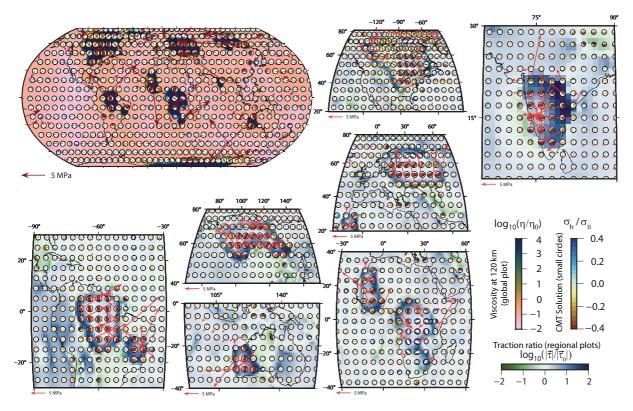


Figure S1: Global and regional traction patterns and stress regimes from a model with 150 relative viscosity of lithosphere, 0.1 relative viscosity of asthenosphere and cratons that are $100 \times$ more viscous than the surrounding lithosphere. Similar to Fig. 1, background colors in the global plot indicate viscosity, and in zoomed-in plots they indicate the logarithm of the traction ratio ($\log_{10}(|\vec{\tau}|/|\vec{\tau}_0|)$). Arrows represent the magnitude and direction of absolute traction. CMT symbols are colored as the ratio of mean horizontal stress to the second invariant of deviatoric stress (σ_h/σ_{II}).

January 12, 2023, 7:40am

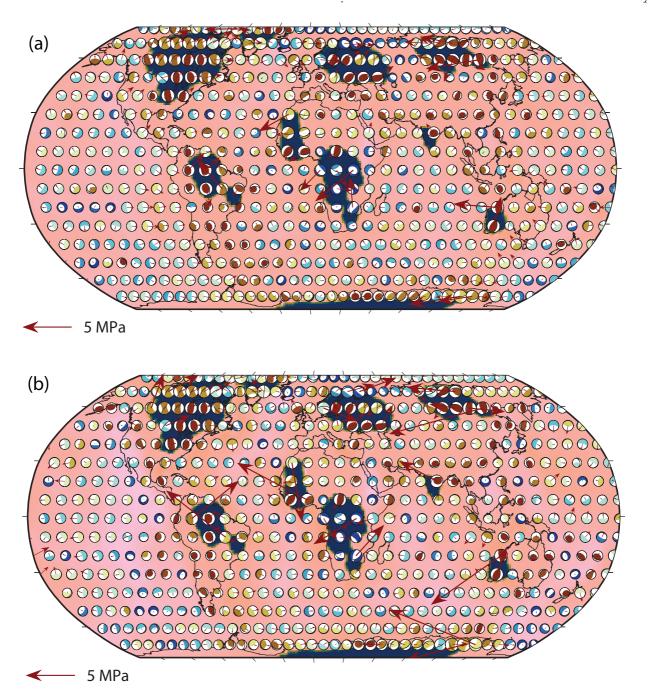


Figure S2: Global traction and stress regime at 150 km (a) and 220 km (b) depth in presence of $100 \times$ more viscous craton than surrounding lithosphere. Figure description is the same as figure 1b in the main manuscript.

January 12, 2023, 7:40am