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S U M M A R Y
Asthenospheric flow accommodates differential shear between plate and mantle motions (Cou-
ette flow) and hosts additional flow driven by horizontal pressure gradients (Poiseuille flow)
that may be associated with mantle upwelling and subduction. Large uncertainties in the
upper mantle flow field and its rheological structure have thus far hindered our ability to
constrain the relative importance of Couette and Poiseuille flows in the asthenosphere. How-
ever, quantifying the relative contributions of asthenospheric Couette and Poiseuille flows
and determining the pattern of their distribution around the globe could help discriminate
among competing theories of asthenospheric origin and shed light on thermal history of the
Earth. We propose a new method to quantify asthenospheric Poiseuille flow using observa-
tions of the depth-dependence of azimuthal seismic anisotropy, which can be obtained from
frequency-dependent surface wave tomography models. In particular, we employ a simple 1-D
Couette-Poiseuille flow model and analytically solve for depth-profiles of the strain axis ori-
entations, which approximates the orientations of azimuthal seismic anisotropy. We show that
Couette-Poiseuille flow induces rotation of azimuthal seismic anisotropy with depth provided
that the horizontal pressure gradient has a component transverse to plate motion. We then
construct an algorithm that uses depth rotations of azimuthal anisotropy to invert for hori-
zontal pressure gradients everywhere in the asthenosphere and test it on a global numerical
mantle flow model. A comparison of pressure gradients predicted using our method with those
computed directly from the numerical model shows that our algorithm is stable and accurate,
unless the pressure gradient is nearly parallel to plate motion. Applying this method to seismic
data will require additional constraints on asthenospheric geometry and viscosity structure. In
the numerical model, we establish that Poiseuille flow drives ∼40 per cent of the total flow
velocity amplitude in the asthenosphere, which indicates that pressure gradients from mantle
convection may be an important component of asthenospheric dynamics that can, in principle,
be constrained seismically.
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1 I N T RO D U C T I O N

Recent analytical and numerical studies indicate that viscous flow
in the asthenosphere (the mechanically weak, low viscosity layer
below the lithosphere e.g. Conrad & Behn 2010; Karato 2012) is
largely a combination of Couette and Poiseuille flows (Lenardic
et al. 2006; Höink & Lenardic 2010; Crowley & O’Connell 2012).
An idealized Couette flow (also called a shear-driven flow) in-
volves viscous shearing between parallel flat plates of infinite di-
mensions, driven by a steady motion of one of the plates (e.g.
Couette 1890). Poiseuille flow (also called a pressure-driven flow)
occurs between parallel plates of infinite width and length and is
driven by a horizontal pressure gradient Poiseuille (1840a,b,c). In
the Earth’s asthenosphere, Couette flow arises to accommodate dif-

ferential shear between plate motions and the convecting mantle
(e.g. Richards et al. 2001) and, according to classical plate tec-
tonic theory, is thought to dominate most asthenospheric regions
away from plate boundaries and hotspots (e.g. Turcotte & Schubert
1967). Asthenospheric Poiseuille flow, on the other hand, may
be induced by mantle upwellings and downwellings (Turcotte &
Schubert 1967; Ryan 1990; Lenardic et al. 2006; Höink & Lenardic
2010), the motion of continental keels through the upper mantle
(Ricard et al. 1988; Harig et al. 2010), and variations in astheno-
spheric thickness (e.g. Batchelor 1967), all of which can generate
horizontal pressure gradients.

Unfortunately, determining the relative importance of Couette
and Poiseuille flow components in the asthenosphere has been dif-
ficult due to large uncertainties in constraining the mantle’s flow
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field and rheology (e.g. Karato & Wu 1993; Savage 1999; Savage
& Holt 2002). However, quantifying the Poiseuille component of
asthenospheric flow and determining its spatial distribution around
the globe could help answer several outstanding questions in mantle
dynamics. For example, Couette and Poiseuille flows in the astheno-
sphere have been linked to different modes of mantle convection:
Couette flow is found to correspond to the active lid regime of man-
tle convection while Poiseuille flow dominates for the sluggish lid
mode (Solomatov 1995; Höink & Lenardic 2010) and is important
for intermediate modes (Crowley & O’Connell 2012). Because the
efficiency of planetary cooling depends on the convective mode
(Solomatov 1995; Crowley & O’Connell 2012), constraining the
relative importance of these two flow components may shed light
on the convective regimes of present and past Earth, and, as a result,
help elucidate Earth’s thermal history (Korenaga 2008; Silver &
Behn 2008).

Poiseuille flow may also explain specific geologic features. For
example, Poiseuille flow may provide an explanation for the exis-
tence of asymmetries in subsidence rate, seamount counts, shear
wave splitting delays, electrical conductivity and other geophysical
observables across the East Pacific Rise (EPR) (Conder et al. 2002;
Toomey et al. 2002). Specifically, eastward-directed Poiseuille flow
is believed to experience a component of upwelling beneath the
western flank of the EPR, where it encounters increasingly thin-
ner lithosphere, and a component of downwelling to the east of
the EPR. This, in turn, should create asymmetry in the melting re-
gion across the EPR and could explain the observed asymmetries
(Conder et al. 2002). Asthenospheric Poiseuille flow also forms the
basis of the ‘plume-fed asthenosphere’ hypothesis, in which the re-
distribution of hot material continuously supplied by mantle plumes
is proposed as the source and the main driver of the asthenospheric
flow (e.g. Phipps Morgan et al. 1995; Phipps Morgan & Smith 2002;
Yamamoto et al. 2007). Finally, Poiseuille flow may be important
for driving trench-parallel flow (Long & Silver 2009) within a thin
low-viscosity layer beneath slabs (Phipps Morgan et al. 2007).

Couette flow shears asthenosphere, which produces lattice pre-
ferred orientation (LPO) of olivine crystals that is detectable as
seismic anisotropy (e.g. McKenzie 1979; Ribe 1989; Karato & Wu
1993). Observations of seismic anisotropy have previously been at-
tributed to a Couette flow (Gaboret et al. 2003; Behn et al. 2004;
Hammond et al. 2005; Becker et al. 2006a,b; Conrad et al. 2007;

Conrad & Behn 2010). A pure Couette flow produces a simple
shear strain rate with constant amplitude and, by itself, cannot in-
duce seismically detectable depth variations in the orientation of
the LPO (Fig. 1A). However, the amplitude of the simple shear
strain rate that results from Poiseuille flow varies with depth: it is
maximized at the top and at the base of the asthenosphere and is
minimized in the mid-asthenosphere. Hence, when combined with
Couette flow, Poiseuille flow should cause the shearing orientation,
and presumably also azimuthal seismic anisotropy, to rotate with
depth, provided that the pressure gradient has a component trans-
verse to plate motion (Fig. 1B). Therefore, it should be possible
to use the depth-dependence of asthenospheric azimuthal seismic
anisotropy to constrain horizontal pressure gradients, and conse-
quently, to quantify the magnitude and orientation of Poiseuille
flow in the asthenosphere.

Depth profiles of the orientation of azimuthal seismic anisotropy
can be obtained from frequency-dependent surface wave tomog-
raphy models. Both global (e.g. Becker et al. 2003; Debayle et al.
2005; Becker et al. 2007) and regional (e.g. Marone & Romanowicz
2007; Hansen et al. 2008; Deschamps et al. 2008; Lin et al. 2010;
Yuan & Romanowicz 2010) models of seismic anisotropy show sig-
nificant variations in the orientation of azimuthal seismic anisotropy
with depth in the asthenosphere. Several studies have attributed the
observed depth-variations in azimuthal seismic anisotropy to a tran-
sition from the lithosphere, which may host several layers of fossil
anisotropic fabric reflecting past deformation events, to the astheno-
sphere where anisotropy formation is flow-driven (e.g. Deschamps
et al. 2008; Gao et al. 2010; Huang et al. 2011; Vinnik et al. 2012).
Most numerical models of global mantle flow (e.g. Becker et al.
2003; Conrad & Behn 2010) ignore the deformation history of the
lithosphere, and hence, do not predict fossil anisotropy. Nonetheless,
these models predict active LPO development in the asthenosphere,
and several authors (e.g. Conrad et al. 2007) find depth rotations
about a vertical axis of azimuthal seismic anisotropy with later-
ally varying amplitude of up to several tens of degrees within the
asthenosphere (Fig. 2). This suggests that some of the seismically
observed depth-variations of anisotropy may be due to flow varia-
tions within the asthenosphere itself, instead of (or in addition to) a
lithosphere–asthenosphere contrast.

Here, we develop a new method to quantify Poiseuille flow in
the asthenosphere using depth-dependence of asthenospheric shear.

Figure 1. Dominant flow regimes in the asthenosphere (left column) and associated LPO (right column) in the reference frame of the mantle: (A) pure Couette
flow does not induce changes in the orientation of LPO with depth; (B) the combination of Couette flow and Poiseuille flow perpendicular to plate motion does
lead to rotation of LPO with depth.
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Figure 2. Average rotation of azimuthal seismic anisotropy per kilometres of asthenosphere for the GMFM (Conrad & Behn 2010). The global average value
is 0.5 deg km−1.

We test our method on the output of a numerical global mantle flow
model (GMFM) (Conrad et al. 2007; Conrad & Behn 2010), which
has been used to predict a variety of geophysical observables includ-
ing plate motions (van Summeren et al. 2012), intraplate volcanism
(Conrad et al. 2011) and SKS splitting observations (Conrad &
Behn 2010). Specifically, we implement a grid search algorithm to
find the horizontal pressure gradient magnitude and orientation that
minimizes the misfit between depth profiles of the asthenospheric
infinite strain axis (ISA) orientations computed by the GMFM and
strain axis orientations derived analytically for a Couette–Poiseuille
flow with constant Newtonian viscosity. The ISA is the asymptotic
orientation of the long axis of the finite strain ellipsoid upon ex-
posure to an infinite amount of constant strain, and serves as an
approximation for the LPO (Kaminski & Ribe 2002). We apply our
algorithm to the depth profiles of asthenospheric ISA orientations
below each surface grid point of the GMFM. To test our method,
we compare our results to the pressure gradients computed directly
by the GMFM (Conrad & Behn 2010). We find that the pressure
gradient magnitudes and directions rendered by our method closely
match those computed by the GMFM. Finally, we separate the Cou-
ette and Poiseuille components of the asthenospheric flow in the
GMFM and compare their relative contributions to the total flow
balance in the asthenosphere.

2 A NA LY T I C A L C O U E T T E – P O I S E U I L L E
M O D E L F O R A N E W T O N I A N F LU I D
W I T H C O N S TA N T V I S C O S I T Y

We consider a fully developed plane Poiseuille flow with an up-
per plate moving with constant speed, uo. This flow is called a
plane Couette–Poiseuille flow (e.g. Papanastasiou et al. 2000) and
is governed by the Navier-Stokes equations. Under the lubrication
approximation, the horizontal pressure gradient is balanced by the
vertical gradient of the shear stresses (Batchelor 1967). Hence, the
Navier-Stokes equations simplify to

− ∂p
∂x1

+ ∂

∂x3

(
µ (x3)

∂u1 (x3)
∂x3

)
= 0 (1a)

− ∂p
∂x2

+ ∂

∂x3

(
µ (x3)

∂u2 (x3)
∂x3

)
= 0, (1b)

where ∂p
∂x1

and ∂p
∂x2

are horizontal pressure gradients along and or-
thogonal to plate motion (positive pressure is compressive), µ is
viscosity (which can vary with depth), and u1 and u2 are velocity
components along x1 and x2. We orient x1 in the direction of plate
motion in the reference frame of the mantle, let x3 point up and
select x2 so that the resulting coordinate system is right-handed. We
allow components of velocity in the x1 and x2 directions (u1 and
u2) to vary with depth and proceed to first solve (1) for a fluid with
Newtonian rheology (where stress and strain are related in a linear
fashion) and constant depth-independent viscosity. For such a fluid,
a dimensionless form of (1) , which we use to express the trade-offs
among the governing parameters, is given by

−α1 + ∂2U1 (X3)

∂ X 2
3

= 0 (2a)

−α2 + ∂2U2 (X3)

∂ X 2
3

= 0 (2b)

and the dimensionless set of boundary conditions is

U1 (0) = 1 U1 (−1) = 0 (3a)

U2 (0) = 0 U2 (−1) = 0, (3b)

where we have defined the following dimensionless quantities:

U = u
uo

(4a)

X3 = x3

H
(4b)

α1 = H 2

uoµ

dp
dx1

(4c)

α2 = H 2

uoµ

dp
dx2

. (4d)
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In the above, X 1, X 2 and X 3 are the dimensionless versions of x1,
x2 and x3, H is the layer thickness and uo is the velocity of the top
plate in the x1 direction relative to an assumed stationary mantle.
The parameters α1 and α2 are the dimensionless components of the
pressure gradient in x1 and x2 directions. The magnitude, α, and the
direction, θ , of the dimensionless pressure gradient are given by

α =
√

α2
1 + α2

2, (5)

θ = tan−1

(
α2

α1

)
. (6)

The particular solution of (2) given (3) is

U1 (X3) = 1
2
α1 X 2

3 +
(

1
2
α1 + 1

)
X3 + 1 (7a)

U2 (X3) = 1
2
α2 X 2

3 + 1
2
α2 X3. (7b)

Differentiating (7) with respect to X 3 yields

dU1

d X3
= α1 X3 + 1

2
α1 + 1 (8a)

dU2

d X3
= α2 X3 + 1

2
α2. (8b)

Expression (8) serves as an analytical predictor of strain axis
orientation as a function of depth in the upper mantle. Exploring
the behaviour of (8), we discover that pure Couette flow, (i.e. keeping
α = 0), produces shear in the direction of plate motion (i.e. ∂U1

∂ X3
= 1,

∂U2
∂ X3

= 0). However, introducing a dimensionless constant horizontal
pressure gradient transverse to the motion of the plate, i.e. setting
α2 $= 0, produces rotation of the strain axis with depth (Fig. 3A).
This occurs because the amplitude of simple shear generated by
Poiseuille flow varies with depth while the amplitude of simple
shear produced by Couette flow is depth independent. In general,
a stronger transverse component of the pressure gradient results in
larger rotation angles and more rapid rotation with depth. For large
pressure gradients, the most rapid depth rotation occurs within the
middle of the asthenospheric layer (Fig. 3A).

We also investigate the effects of varying the pressure gradient
in the x1 direction (α1) while holding the transverse component of
the pressure gradient (α2) constant and non-zero (Fig. 3B). We find
that as α1 grows, the orientation of the strain axis moves closer to
the orientation induced by pure Couette flow (θ = 0). However,
for large α1, the shear caused by pressure gradients overwhelms
the Couette component, and forces the strain axis to rotate rapidly
in the mid-asthenosphere. Overall, the strain axis orientation will
change with depth whenever the component of the pressure gradient
transverse to plate motion is non-zero.

A similar analysis may be extended to Newtonian fluids with
piecewise constant viscosity structure using the method presented
in Section A1. In addition, we obtain analytical solutions to the
Couette-Poiseuille flow model for a viscous fluid whose viscosity
varies linearly with depth (Section A2), and for a non-Newtonian
viscous fluid with constant pre-exponential rheological parameter
(Section A3). In all of the above cases, we find that the orientation
of the strain axis changes with depth as long as the pressure gradient
transverse to the plate motion direction is non-zero. Thus, the pres-
ence of pressure-driven flow directed at an angle to plate motions
may account for observations of depth-dependence of azimuthal
seismic anisotropy in surface-wave tomography models (e.g. Becker
et al. 2003; Debayle et al. 2005; Becker et al. 2007) and in GMFMs

Figure 3. Analytical predictions of strain axis depth-rotation: (A) increasing
pressure gradient transverse to plate motion (α2) leads to progressively larger
rotation of the strain axis in the asthenospheric layer; (B) the combination
of pressure gradients parallel and orthogonal to plate motion (α1 and α2)
induces different depth-rotations of the strain axis.

(e.g. Becker et al. 2003; Conrad et al. 2007; Conrad & Behn 2010,
Fig. 2). Conversely, it should be possible to use the observations
of azimuthal seismic anisotropy to quantify pressure-driven flow in
the asthenosphere.

3 I N V E RT I N G F O R P R E S S U R E
G R A D I E N T S

We use the depth profiles of the ISA orientations from the GMFM
(Conrad et al. 2007; Conrad & Behn 2010) and strain axis rota-
tions predicted by our analytical Couette-Poiseuille model with con-
stant viscosity to constrain the range of possible horizontal pressure
gradient magnitudes (αi) and directions (θ i) in the asthenospheric
region of the GMFM, where viscosity is constant. This, in turn,
allows us to easily quantify the relative contributions of Couette
and Poiseuille flows to the total asthenospheric flow in the GMFM.
This GMFM was developed using the spherical finite element code
CitComS (Zhong et al. 2000; Tan et al. 2006). The GMFM uses
NUVEL-1A plate motions (DeMets et al. 1994), mantle density
heterogeneity computed from S20RTSb seismic tomography model
(Ritsema et al. 2004) and net lithospheric rotation (Gripp & Gordon
2002) to drive the flow, and SKS splitting to constrain the relative in-
fluence of these drivers (Conrad et al. 2007; Conrad & Behn 2010).
We take the orientations of the ISA, the thickness of the lithosphere,
asthenospheric viscosity and mantle velocity at the base of the as-
thenosphere directly from the GMFM (Conrad & Behn 2010). We
perform all of our calculations in the local reference frame of the
mantle at 300 km. This choice is motivated by the original GMFM
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Figure 4. Inversion algorithm applied to a representative point (132.6◦N, 45.8◦W): (A) best-fitting profile closely matches the actual ISA depth profile; (B)
the misfit surface as a function of α1 and α2 shows the pressure gradient value that minimizes the misfit for (A).

setup, where 300 km corresponds to the boundary between the lower
viscosity asthenosphere and the higher viscosity upper mantle. To
cast our calculations into the local reference frame of the mantle,
we orient the x1 axis at each grid point along the direction of the
vector difference between observed plate motion and mantle flow at
300 km, let x3 point up and choose x2 so that the resulting coordinate
system is right-handed. We then reorient the ISA at each point in
each layer by subtracting the azimuth of the vector difference be-
tween the surface plate motion and mantle velocity at 300 km from
the orientation of the ISA in each layer. We determine the thickness
of the asthenosphere by subtracting the lithospheric thickness from
300 km. Since the vertical resolution of the GMFM is 25 km, the
number of points in a depth profile of the ISA at a given point, N , is
given by the quotient of the asthenospheric thickness (interpolated
to the nearest available data layer) and 25 km.

At every GMFM surface grid point, we implement a grid search
algorithm and find the values of α1 and α2 that produce the best fit
to the observed depth rotation of the ISA in the asthenosphere of the
GMFM. For the sake of computational parsimony, we restrict the α1

and α2 domains to lie between −10 and 10 dimensionless pressure
gradient units. We quantify the misfit between the two curves by
applying the root mean square (rms) function defined as

misfit =

√√√√
N∑

i=1

(φo,i − φa,i )
2

N
, (9)

where φo,i is the orientation of the ISA from the GMFM at location
i and φa,i is the strain axis orientation predicted by the analytical
Couette-Poiseuille model for a given value of α1 and α2. We find
the minimum misfit between the actual and analytical curves as a
function of α1 and α2 at every grid point. Fig. 4 demonstrates the
inversion results for an arbitrarily selected point. The misfits for the
best-fitting points between the actual ISA orientation depth profile
and the analytical profiles of the strain axis in the asthenosphere
of the GMFM are generally low (average misfit of all grid points
is 11◦). We find that the misfits are highest (up to 35◦) around
plate boundaries, where flow may deviate significantly from plane
Couette–Poiseuille approximation and the ISA may not be a valid
predictor of the azimuthal seismic anisotropy.

Next, we dimensionalize α1 and α2 according to (4) and rotate
them back into the reference frame of the Earth. Finally, we cre-
ate a global map of horizontal pressure gradient magnitudes and
directions everywhere in the asthenosphere (Fig. 5A). This map

reveals a number of disconnected regions with high values of the
horizontal pressure gradient (up to about 30 Pa m−1). Particularly,
we find a high pressure gradient belt around the west coast of South
America where the Nazca Plate is subducting. We also discover
high pressure gradients near Australia where a continental keel
is believed to be generating pressure gradients in the upper man-
tle (Harig et al. 2010). Notably, pressure gradients are high near
mid-ocean ridges, the Eurasia/India Plate boundary and Western
Eurasia, where they may be generated by subducted Tethys slab
(Stampfli et al. 2002).

To test our method, we use the stress tensor from the GMFM
to compute average horizontal pressure gradient magnitudes (αst)
and directions (θ st) in the asthenosphere (Fig. 5B). A comparison
of pressure gradient magnitudes and orientations obtained from our
inversion method with those computed directly from the stress ten-
sor reveals remarkable similarities in pressure gradient orientations
(Fig. 6A), with 70 per cent of points deviating by less than 20◦.
Removing points that lie closer than 300 km from plate boundaries,
which are not well-resolved in the GMFM (Conrad & Behn 2010),
further improves the misfit (Fig. 6A). This strengthens the idea that
the plane Couette–Poiseuille flow model adequately captures the
flow dynamics throughout most of the asthenosphere, and justifies
our approach.

However, we find that our inversion method on average under-
estimates the magnitudes of the pressure gradients (Fig. 6B) from
the GMFM. While the average pressure gradient magnitude com-
puted directly from the model stress tensor is 9.7 Pa m−1, the average
value of the pressure gradient obtained with our inversion algorithm
is only 6.6 Pa m−1 (Fig. 5). This discrepancy can be explained by
our implicit assumption that the asthenoshere hosts fully developed
Poiseuille flow, which requires an infinite viscosity contrast between
the asthenosphere and the upper mantle. Yet, in the GMFM the as-
thenosphere is only ten times less viscous than the upper mantle
beneath it (Conrad et al. 2007; Conrad & Behn 2010). As a re-
sult, deformation of the upper mantle between 300 and 670 km
depth in the GMFM accommodates a portion of the lateral pressure
gradients.

To investigate whether upper mantle deformation could be a plau-
sible explanation for the discrepancy in pressure gradient magni-
tudes and to explain the effect of removing points close to plate
boundaries (Fig. 6), we develop a two-layer model that employs the
numerical solution developed in Section A1. We create two sets
of synthetic strain orientation depth-profiles for all combinations
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Figure 5. Pressure gradient magnitudes (colours) and directions (arrows): (A) obtained using the inversion algorithm; (B) computed directly from the GMFM
stress tensor.

of α1 and α2 in our domain, using viscosity contrasts between the
asthenosphere (200 km thick) and the layer beneath it (370 km
thick) of 10 and 100. We then compare these solutions to solutions
in which we assume a single layer with an infinite viscosity contrast.
We find that a viscosity contrast of only 10 causes our inversion rou-
tine to distort the magnitude (up to a factor of 4) and the orientation
(up to 40◦) of pressure gradients within a significant portion of our
domain (Figs 7A and C). Examining the 2-D histogram of α1 and
α2 obtained using either inversion method (Fig. 8D) or the GMFM
stress tensor (Fig. 8C) reveals that the majority of the points in
the GMFM have pressure gradient values that lie to the right of
the α1 = 0 line in the numerical domain (i.e. in the direction of
plate motion), a region where a too-small viscosity contrast leads
our algorithm to underestimate the magnitude of pressure gradients
(Fig. 7A). Hence, the presence of a relatively small viscosity contrast
in the GMFM (factor of 10) explains why our predicted pressure
gradients are on average smaller than those actually present in the
GMFM asthenosphere. Still, some points lie within the portion of
the domain where our algorithm overestimates the magnitude of
pressure gradients (e.g. α1 < 0 in Fig. 7A), which explains why
some of our predictions are too high. Importantly, we find that
the presence of a higher viscosity contrast (e.g. a factor of 100)
significantly improves the performance of our inversion algorithm
(Figs 7B and D).

A possible explanation for why removing points close to plate
boundaries increases the magnitude of predicted pressure gradients

slightly (Fig. 6B) lies in the pressure field distribution around these
regions. At the divergent margins, we expect pressure to be min-
imized close to the ridge axis as the plates move apart. Thus, α1

around divergent margins should be positive. At convergent mar-
gins, we also expect α1 to be positive as pressure increases near
points of convergence in models with imposed velocity boundary
conditions (Hager & O’Connell 1979). Hence, omitting points close
to plate boundaries from our analysis should result in preferential
removal of points where our algorithm tends to underestimate pres-
sure gradient magnitudes (Fig. 7A), which also leads to an increase
in the relative number of points at which we overestimate pressure
gradient magnitude.

In general, the pressure gradients obtained using our inversion
method deviate from the GMFM output in the areas where the plane
Couette–Poiseuille flow model is not expected to be a good approx-
imation of flow dynamics. For example, plate boundaries are likely
dominated by more complex flow regimes where vertical velocities
may not be neglected (e.g. Turcotte & Schubert 1967). In addi-
tion, we find large misfits between the GMFM pressure gradients
and our results (Fig. 5) in regions of known mantle upwellings and
downwellings. Particularly, the orientations of pressure gradients
poorly match in the middle of the North American continent, where
the subducted Farallon slab is believed to be driving large vertical
flow (Conrad et al. 2004; Forte et al. 2007). We also discover a
region of large discrepancy below Eurasia, where the Tethys slab is
probably sinking (Stampfli et al. 2002), and thus creating significant
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Figure 6. Distribution of (A) angular difference (|θ − θ st|) and (B) magni-
tude ratio of horizontal pressure gradients ( θ

θst
) in the asthenosphere obtained

using inversion method (θ ) compared to those computed directly from the
stress tensor of the global numerical mantle flow model (θ st). Dark bars
show results for all grid points; light bars exclude points within 300 km of a
plate boundary.

deviations from an idealized plane Couette–Poiseuille flow. Finally,
misfits beneath cratons are likely caused by an inadequate num-
ber of resolved layers (25 km spacing) within the thin subcratonic
asthenosphere.

4 RO B U S T N E S S O F T H E I N V E R S I O N
A L G O R I T H M

To verify the stability of our algorithm and further test our re-
sults, we perform a sensitivity analysis. For each combination of
dimensionless α1 and α2, we run 300 realizations of the grid search
algorithm on analytical profiles of depth-rotated anisotropy (e.g. as
in Fig. 3) that have been randomly perturbed at each depth by ±18◦

using a uniform distribution, which corresponds to adding 20 per
cent noise to the data. We then attempt to recover the original α1,
α2 using our inversion routine.

The sensitivity analysis reveals that our algorithm is relatively
stable everywhere in our chosen domain except for cases where the
component of pressure gradient transverse to plate motion is close

to zero (Figs 8A and B). The standard deviation of the pressure
gradient magnitudes and orientations shows less then 20 per cent
variation in magnitude (Fig. 8A) and less than about 10◦ variation
in orientation (Fig. 8B), except near α2 = 0. The maximum error
in the orientation of pressure gradient is ∼40◦ and occurs for very
small pressure gradients (Fig. 8B). This happens because simple
shear orientations produced by Couette and Poiseuille flows point
in the same direction if pressure gradients transverse to plate motion
are zero. In such situations, we are unable to make any inferences
about the magnitude of the pressure gradient (except that α2 = 0).

5 D I S C U S S I O N : Q UA N T I F Y I N G
P O I S E U I L L E F L OW

To quantify the relative importance of Couette and Poiseuille flows,
we separate the net asthenospheric flow in the GMFM into compo-
nents driven by each flow type. In particular, we use (7) to compute
the average Poiseuile velocity at every point on the grid. We obtain
an expression for Couette velocity by setting α1 and α2 in (7) to
zero:

U1C (X3) = X3 + 1 (10a)

U2C (X3) = 0. (10b)

The Poiseulle velocity is then given by

U1P (X3) = 1
2
α1

(
X 2

3 + X3
)

(11a)

U2P (X3) = 1
2
α2

(
X 2

3 + X3
)
. (11b)

Averaged through the layer, we find that the average Couette velocity
in the asthenosphere is

Ū1C = 1
2

(12a)

Ū2C = 0 (12b)

while the average Poiseuille velocity is found to be

Ū1P = − 1
12

α1 (13a)

Ū2P = − 1
12

α2. (13b)

By plotting Poiseuille flow as a percentage of total flow (com-

puted as (U 2
1P +U 2

2P )1/2

((U1P +U1C )2+U 2
2P )1/2 ) (Fig. 9), we show that a significant

proportion of the Earth’s asthenospheric flow (as defined in the
GMFM) is driven by lateral pressure gradients (nearly 40 per cent
on average). The asthenosphere beneath central North America
and the west coast of South America is dominated by Poiseuille
flow generated by upwelling and subduction, respectively. Astheno-
spheric flow beneath Australia also shows evidence of pressure-
driven flow, which is likely amplified by the continental keel (Harig
et al. 2010). We also find a significant Poiseuille component of the
flow beneath the East Pacific Rise and the Mid-Atlantic Ridge. Fi-
nally, we observe that Poiseuille flow is important around Hawaii
and Southeast Africa, where mantle upwellings may be responsible
for generating pressure gradients (Wolfe et al. 2009; Moucha &
Forte 2011).
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Figure 7. Comparison of pressure gradients obtained using our inversion method (which assumes a single layer of infinite viscosity contrast) to pressure
gradients used to predict depth rotation in a two layer model (Section A1) for all pressure gradient combinations (α1 and α2) in the domain, in increments of
0.5. The two layer model includes a 200 km thick asthenosphere and a 370 km thick upper mantle that is either 10 (A and C) or 100 (B and D) times more
viscous than the asthenosphere. Shown are (A and B) the magnitude ratios of inverted to applied pressure gradients, and (C and D) the angular difference in
pressure gradient orientations.

In the future, a plane Couette–Poiseuille flow model could be
used in conjunction with observations of depth rotation of az-
imuthal seismic anisotropy to invert for horizontal pressure gradi-
ents in the Earth’s asthenosphere. While global azimuthal seismic
anisotropy models may suffer from resolution issues, high res-
olution regional azimuthal anisotropy models (e.g. Marone &
Romanowicz 2007; Deschamps et al. 2008; Hansen et al. 2008; Lin
et al. 2010; Yuan & Romanowicz 2010) use the depth-sensitivity
of frequency-dependent surface waves to constrain the depth varia-
tion of anisotropy; these tomographic models should be useful for
constraining pressure gradients in Earth’s asthenosphere.

However, to most usefully apply our method to such constraints,
it will be necessary to account for several factors. First, we ex-
pect the pressure gradient field in the asthenosphere to be spa-
tially smooth over lateral distances of at least hundreds of kilo-
metres (away from plate boundaries). Hence, using an inversion
algorithm that can ensure spatial coherence of pressure gradients
will help improve our method’s applicability by utilizing combined
constraints on depth-rotation across broad regions. Secondly, cur-
rent uncertainties in the location of the lithosphere–asthenosphere
boundary need to be reduced to distinguish depth-rotations asso-

ciated with asthenospheric pressure gradients from those caused
by differences between the anisotropic fabrics of the lithosphere
and asthenosphere. Thirdly, it may be necessary to invert for ad-
ditional parameters, such as the thickness of the asthenosphere,
mantle flow velocity beneath the base of the asthenosphere and
the asthenospheric viscosity structure, because these parameters
are poorly constrained in places, and it is not clear that input val-
ues should be taken from numerical flow models. Hence, depth-
dependence of seismic anisotropy may additionally provide a new
constraint on these parameters. However, realizing these constraints
will require more and better seismic data, and may introduce new
trade-offs. Finally, because much of the upper 400 km of the man-
tle is dominated by dislocation creep (Karato & Wu 1993), us-
ing a Couette-Poiseuille solution for a non-Newtonian fluid could
be more appropriate (Section A3), despite added complexity and
computational cost.

6 C O N C LU S I O N S

Using analytical solutions of the Navier-Stokes equations for a
variety of asthenospheric viscosity structures (Newtonian fluid
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Figure 8. Sensitivity analysis: Mean standard deviation of (A) dimensionless pressure gradient magnitudes as a percentage of true magnitude, and (B) pressure
gradient orientations, after 300 realizations that include 20 per cent noise; (C) 2-D histogram of pressure gradients in the GMFM computed from the stress
tensor; (D) 2-D histogram of pressure gradients obtained using the inversion method.

with constant or depth-dependent viscosity, or a non-Newtionian
fluid with constant pre-exponential rheological parameter), we
show that the strain axis (and presumably also azimuthal seismic
anisotropy) will change orientation with depth in the presence of
a pressure gradient with a component orthogonal to plate motion.
This finding suggests that depth variations in the orientation of
azimuthal seismic anisotropy should result from pressure-driven
asthenopsheric flow. These depth-rotations are most rapid in the
middle of the asthenospheric layer (Fig. 3), which should make
them distinct from depth-variations associated with fabric differ-
ences between asthenospheric and lithospheric layers (Deschamps
et al. 2008; Gao et al. 2010; Huang et al. 2011; Vinnik et al.
2012). We demonstrate here that this depth-rotation can be used to
constrain the magnitude and direction of pressure gradients in the
asthenosphere. In particular, we develop an inversion scheme for
accomplishing this, and test it on a synthetic case represented by
a numerical mantle flow model (Conrad & Behn 2010). We find
that for most of the asthenosphere our inversion scheme constrains
the orientation and, to a lesser extent, the magnitude of astheno-
spheric pressure gradients. Our inversion method fails in locations
where Poiseuille flow is nearly parallel to plate motions, and in lo-
cations where mantle dynamics may not be adequately captured by

the plane Couette–Poiseuille approximation (e.g. plate boundaries,
cratons and areas of significant upwelling or downwelling).

For a global mantle flow model, we find that Poiseuille flow dom-
inates asthenospheric flow where pressure gradients are largest,
such as near mid-ocean ridges and above areas of known upwelling
and downwelling, particularly on the Atlantic side of the world
where plate motions, and therefore Couette flows, are slower. By
contrast, Couette flow is more important beneath the fast-moving
plates of the Pacific basin (Fig. 9). We estimate that Poiseuille flow
constitutes about 40 per cent of the total flow velocity amplitude
on average, which suggests that pressure-driven flow is an impor-
tant component of asthenospheric dynamics in the numerical flow
model (Conrad & Behn 2010). A straightforward application of
our method to actual observations of depth-rotation (obtained from
frequency-dependent surface wave tomography models) may be
tricky given current uncertainties in asthenospheric viscosity struc-
ture, thickness and rheology, as well as possible data resolution is-
sues. Nonetheless, our work offers a new framework for interpreting
observations of depth-dependence of azimuthal seismic anisotropy
in the asthenosphere and provides a method to constrain, at least in
principle, the pressure-driven component of horizontal flow in the
asthenosphere.
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Figure 9. Magnitude of Poiseuille flow velocity in the asthenosphere obtained using the inversion method as a percentage of total flow velocity (colours).
Arrows show the orientations of Couette (black) and Poiseuille (blue) flows.
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A P P E N D I X

A1 Newtonian 2-D Couette Poiseuille flow in N layers
with layered viscosity structure—numerical approach

To address the case of a viscous fluid with a layered viscosity
structure, we employ a numerical approach. Let us partition the
asthenosphere into N layers. Let the viscosity of the top layer be
µ1 and the viscosity of the N th layer be µN . The solution to the
governing system of eq. (2) for the nth layer is given by

U1,n (X3,n) = 1
2
α1,n X 2

3,n + A1,n X3,n + A2,n (A1a)

U2,n (X3,n) = 1
2
α2,n X 2

3,n + B1,n X3,n + B2,n . (A1b)
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The conditions at the interfaces are the continuity of velocities and
stresses (e.g. Lai et al. 2010). We will first address the solution
for the X 1 component. The continuity of velocities across the nth
interface can be described as

U1,n

∣∣
X3,n

= U1,n+1

∣∣
X3,n

. (A2)

Thus,

A1,n X3,n + A2,n − A1,n+1 X3,n − A2,n+1 = 1
2

X 2
3,n (α1,n+1 − α1,n) .

(A3)

The continuity of stresses across the nth interface is given by

µn
∂U1,n

∂ X3

∣∣∣∣
X3,n

= µn+1
∂U1,n

∂ X3

∣∣∣∣
X3,n

, (A4)

which gives

µn A1,n − µn+1 A1,n+1 = X3,n (µn+1α1,n+1 − µnα1,n) . (A5)

We combine (A3), (A5) and (3) (Hager & O’Connell 1981) to obtain
the following system of linear equations for the x1 component:

M &A = &x1, (A6)

which may be expanded as

M =





0 1 0 · · · · · · · · · · · · · · ·
X3,1 1 −X3,1 −1 0 · · · · · · · · ·

0 0 X3,2 1 −X3,2 −1 0 · · ·
...

...
...

...
...

...
...

...

µ1 0 −µ2 0 · · · · · · · · · · · ·
0 0 µ2 0 −µ3 0 · · · · · ·
...

...
...

...
...

...
...

...

· · · · · · · · · · · · · · · · · · 1 −1





,

(A7)

&A =





A1,1

A2,1

A1,2

A2,2

...

...

A1,N

A2,N





, (A8)

and

&x1 =





1

1
2

X 2
3,1 (α1,2 − α1,1)

1
2

X 2
3,2 (α1,3 − α1,2)

...

X3,1 (µ2α1,2 − µ1α1,1)

X3,2 (µ3α1,3 − µ2α1,2)

...

1
2
α1,N





. (A9)

Applying similar reasoning, we derive a linear system of equations
for the x2 component

M &B = &x2, (A10)

where matrix M is as above,

&B =





B1,1

B2,1

B1,2

B2,2

...

...

B1,N

B2,N





(A11)

and

&x2 =





0

1
2

X 2
3,1 (α2,2 − α2,1)

1
2

X 2
3,2 (α2,3 − α2,2)

...

X3,1 (µ2α2,2 − µ1α2,1)

X3,2 (µ3α2,3 − µ2α2,2)

...

1
2
α2,N





. (A12)

Once M is inverted using standard schemes, &A and &B may be
determined using (A6) and (A10). Finally, (A1) and its derivative
may then be used to compute the pressure gradient magnitudes and
directions for fluids with a layered viscosity structure.

A2 Couette–Poiseuille flow with Newtonian rheology and
linearly varying depth-dependent viscosity

We treat the upper mantle as a Newtonian fluid where viscosity is
allowed to vary linearly with depth, i.e.

µ = µo (1 + γ x3) , (A13)
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and where γ is an arbitrary constant that controls the rate and sense
of change of viscosity. The governing system of eq. (1) may then
be written as

− ∂p
∂x1

+ ∂

∂x3

(
µo (1 + γ x3)

∂u1 (x3)
∂x3

)
= 0 (A14a)

− ∂p
∂x2

+ ∂

∂x3

(
µo (1 + γ x3)

∂u2 (x3)
∂x3

)
= 0. (A14b)

The non-dimensionalized analogue of (A14) is

−α1 + ∂

∂ X3

(
(1 + γ ∗ X3)

∂U1 (X3)
∂ X3

)
= 0 (A15a)

−α2 + ∂

∂ X3

(
(1 + γ ∗ X3)

∂U2 (x3)
∂ X3

)
= 0, (A15b)

where U , X 3, P1 and P2 are defined by (4) and

γ ∗ = γ H. (A16)

Again, α1 and α2 are the non-dimensionalized parameters that de-
termine the horizontal pressure gradient in the X 1 and X 2 directions,
as in the case of constant viscosity. The magnitude and orientation
of the pressure gradient are given by (5) and (6). Solving (A15)
gives

U1 (X3) =
(C1γ

∗ − α1) ln (γ ∗ X3 + 1) + α1γ
∗ X3

γ ∗2
+ C2 (A17a)

U2 (X3) =
(D1γ

∗ − α2) ln (γ ∗ X3 + 1) + α2γ
∗ X3

γ ∗2
+ D2. (A17b)

Applying boundary conditions described in (3), we find the un-
known constants of integration:

C1 =
(α1 − γ ∗)
ln (1 − γ ∗)

+ α1

γ ∗ (A18)

C2 = 1 (A19)

D1 = α2 − γ ∗

ln (1 − γ ∗)
+ α2

γ ∗ (A20)

D2 = 0 (A21)

In the limit as γ ∗ approaches zero, we recover the solution for
a Newtonian fluid with depth independent viscosity given by (7).
Next, we differentiate (A17) with respect to X 3 to compute the strain
rate with depth

dU1

d X3
=

(C1γ
∗ − α1)

(γ ∗ X3 + 1) γ ∗ + α1

γ ∗ (A22a)

dU2

d X3
=

(D1γ
∗ − α2)

(γ ∗ X3 + 1) γ ∗ + α2

γ ∗ . (A22b)

Expression (A22) gives the orientation of the shear in the layer.

A3 Non-Newtonian 2-D Couette Poiseuille flow: constant
pre-exponential rheological parameter

Here we treat the asthenosphere as a non-Newtonian fluid. This
means that the relationship between stress and strain is no longer
linear. Instead, the power-law rheology is described by

τ = 1

Cτ n−1
I I

ε̇, (A23)

where C is a pre-exponential rheological parameter, 1/Cτ n −1 is the
effective viscosity and τ II is the second invariant of stress tensor.
Here, we use

τ 2
I I = τ 2

13 + τ 2
23, (A24)

which is the simplest case for which only shear terms are significant.
We consider the case of n = 3, which is appropriate for disclocation
creep in olivine (Karato & Wu 1993). Then, for a non-Newtonian
fluid with constant pre-exponential rheological parameter C, (A23)
becomes

ε̇13 = C
(
τ 2

13 + τ 2
23

)
τ13 = du1

dx3
(A25a)

ε̇23 = C
(
τ 2

13 + τ 2
23

)
τ23 = du2

dx3
. (A25b)

Integrating (1) with respect to x3 gives

τ13 = C1 + ∂p
∂x1

x3 (A26a)

τ23 = C2 + ∂p
∂x2

x3, (A26b)

where C1 and C2 are constants of integration. Substituting (A26)
into (A25) yields

du1

dx3
= C

((
C1 + ∂p

∂x1
x3

)2

+
(

C2 + ∂p
∂x2

x3

)2
)(

C1 + ∂p
∂x1

x3

)

(A27a)

du2

dx3
= C

((
C1 + ∂p

∂x1
x3

)2

+
(

C2 + ∂p
∂x2

x3

)2
)(

C2 + ∂p
∂x2

x3

)
.

(A27b)

Non-dimensionalizing (A27) leads to

dU1

d X3
= αβx1

(
β2

x1
(C1 + X3)2 + β2

x2
(C2 + X3)2) (C1 + X3)

(A28a)

dU2

d X3
=αβx2

(
β2

x1
(C1 + X3)2 + β2

x2
(C2 + X3)2) (C2 + X3) ,

(A28b)

where C1 and C2 are now dimensionless constants of integration
and

α = C H 4

uo
| ∇ p |3 (A29)

βx1 = ∂p
∂x1

1
| ∇ p | (A30)

βx2 = ∂p
∂x2

1
| ∇ p | (A31)
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| ∇ p |2=
(

∂p
∂x1

)2

+
(

∂p
∂x2

)2

(A32)

θ = tan−1

(
βx2

βx1

)
. (A33)

Note that α and θ are free dimensionless parameters that control the
magnitude and orientation of the dimensionless horizontal pressure
gradient, respectively. Next, we integrate (A28) with respect to X 3

and obtain

U1 (X3) =
αβ3

x1

4
(C1 + X3)4 + αβx1β

2
x2

(
C1C2

2 X3 + C1C2 X 2
3+

+C1 X 3
3

3
+ C2

2 X 2
3

2
+ 2C2 X 3

3

3
+ X 4

3

4

)
+ A (A34a)

U2 (X3) =
αβ3

x2

4
(C2 + X3)4 + αβ2

x1
βx2

(
C2

1 C2 X3 + C1C2 X 2
3

+C2 X 3
3

3
+ C2

1 X 2
3

2
+ 2C1 X 3

3

3
+ X 4

3

4

)
+ B, (A34b)

where A and B are constants of integration. Then, we apply (3) to
determine the values of the constants A, B, C1 and C2

A = 1 −
αβ3

x1
C4

1

4
(A35a)

B = −
αβ3

x2
C4

2

4
(A35b)

0 =
αβ3

x1

4
(C1 − 1)4 + αβx1β

2
x2

(
−C1C∗2

2 + C1C∗
2 − C1

3
+ C2

2

2

−2C2

3
+ 1

4

)
+ 1 −

αβ3
x1

C4
1

4
(A35c)

0 =
Pβ3

x2

4
(C2 − 1)4 + αβ2

x1
βx2

(
−C2

1 C2 + C1C2 − C2

3
+ C2

1

2

−2C1

3
+ 1

4

)
−

αβ3
x1

C4
1

4
. (A35d)

Note that expressions (A35) need to be evaluated numerically. As
with the Newtonian case, we differentiate (A34) with respect to
X 3 to find an expression that describes the strain rate orientation
with depth.
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