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Introduction This Supporting Information provides additional information required to

reproduce the results shown in the paper. Text S1 describes the derivation of the analytical

solution expressed in Eqs. (3) and (4) in the main text, and used in Figure 4. We include

additional Figures S1-S3 to show how the relative heat flux anomaly behaves with non-

dimensional length scale d (Figure S1), and the relative thinning ∆hrel (Figure S2), and

show how the equilibration time changes with d and ∆hrel (Figure S3). Furthermore, Text

S2 and Table S1 provides a more detailed description of the models and the parameters
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necessary to run the simulations, and Tables S2-S4 give the data points shown in Figure

4.

Text S1. In order to derive an analytical solution for the temperature profile and the

heat flux that follow instantaneous lithospheric thinning, we assume a stationary model,

i.e. a model without convection. As a consequence, the temperature and heat flux change

solely due to thermal conduction. For the initial undisturbed lithosphere, the equilibrated

temperature profile in the lithosphere is given as

T (z, t) = T0 +
Tm − T0

L
z, (1)

with the surface and LAB temperatures T0 and Tm and the lithosphere thickness L. If

we then thin lithosphere to a new thickness l = L − ∆h (see inlay in Figure 4) and let

the system equilibrate for an infinite amount of time, the equilibrated temperature profile

would be

T (z, t) = T0 +
Tm − T0

l
z. (2)

Following the approach of Carslaw and Jaeger (1959) Chapter 3.4 for a case with initial

temperature profile f(x) and with ends kept at a fixed temperatures T0 and Tm, we can

split the solution into two parts T (z, t) = u(z, t) +w(z, t), with u(z, t) and w(z, t) chosen
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such that

d2u

dx2
= 0

u(0, t) = T0

u(l, t) = Tm

∂w

∂t
= κ

d2w

dx2

w(0, t) = w(l, t) = 0

w(z, 0) = f(x)− u(z, 0)

In our case, this translates to the boundary and initial conditions

T (0, t) = T0 (3)

T (l, t) = Tm (4)

T (z, 0) = T0 +
Tm − T0

L
z (same as Equation (1)) (5)

with the additional constraint that

T (z,∞) = T0 +
Tm − T0

l
z (same as Equation (2)). (6)

Using the solution for the linear temperature profile in Carslaw and Jaeger (1959) Chapter

3.3, which is

f(z) = kz =
∞∑
n=1

an sin
(nπz

l

)
=

2lk

π

∞∑
n=1

(−1)n−1

n
sin
(nπz

l

)
, (7)

we find

u(z, t) = T0 +
Tm − T0

l
z

w(z, t) = −2lk∑ ∞

n=1

(−1)n−1

n
exp

[
−κn2π2

l2
t

]
sin
(nπz

l

)
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with thermal diffusivity κ. Finally, we can then express the temperature profile as a

function of time and depth via

T (z, t) = T0 +
Tm − T0

l
z − 2lk

π

∞∑
n=1

(−1)n−1

n
exp

[
−κn

2π2

l2
t

]
sin
(nπz

l

)
. (8)

Our temperature gradient k is the differential gradient between Equations (1) and (2) and

can be calculated via

k =
∆T

l
=
Tm − T ∗

l
=

1

l

(
Tm − T0 −

Tm − T0

L
l

)
=

1

l
(Tm − T0)(1− l

L
)

= (Tm − T0)

(
1

l
− 1

L

)
,

with T ∗ = T (l, 0) = T0 − Tm−T0
L

l from Equation (1).

With respect to our boundary and initial conditions (Equations (3)-(6)), we get

Eq.(3) : T (0, t) = T0 +

(
Tm − T0

l
0

)
︸ ︷︷ ︸

=0

−

(
2lk

π

∞∑
n=1

(−1)n−1

n
exp

[
−κn

2π2

l2
t

]
sin

(
nπ0

l

))
︸ ︷︷ ︸

=0

= T0

Eq.(4) : T (l, t) = T0 +

(
Tm − T0

l
l

)
︸ ︷︷ ︸

=Tm−T0

−

(
2lk

π

∞∑
n=1

(−1)n−1

n
exp

[
−κn

2π2

l2
t

]
sin

(
nπl

l

))
︸ ︷︷ ︸

=0

= Tm

Eq.(5) : T (z, 0) = T0 +

(
Tm − T0

l
z

)
−

(
2lk

π

∞∑
n=1

(−1)n−1

n
exp

[
−κn

2π2

l2
0

]
sin
(nπz

l

))
︸ ︷︷ ︸

Eq. (7): =kz=(Tm−T0)( 1
l
− 1

L)z

= T0 +
Tm − T0

L
z

Eq.(6) : lim
t→∞

T (z, t) = T0 +

(
Tm − T0

l
z

)
− lim

t→∞

(
2lk

π

∞∑
n=1

(−1)n−1

n
exp

[
−κn

2π2

l2
t

]
sin
(nπz

l

))
︸ ︷︷ ︸

=0

= T0 +
Tm − T0

l
z
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In order to obtain the heat flux, we use the heat flux equation q = −K dT
dz

with thermal

conductivity K

q(z, t) =
Tm − T0

l
− 2k

∞∑
n=1

(−1)n−1 exp

[
−κn

2π2

l2
t

]
cos
(nπz

l

)
At the surface (z = 0), this simplifies to

q(0, t) =
Tm − T0

l
− 2k

∞∑
n=1

(−1)n−1 exp

[
−κn

2π2

l2
t

]
. (9)

We then introduce the non-dimensional length scale

d = 2

√
κt

l
(10)

and express k in terms of relative thinning

k = (Tm − T0)

(
1

l
− 1

L

)
= (Tm − T0)

(
L− l
Ll

)
=︸︷︷︸

L−l=∆h

Tm − T0

l
∆hrel.

Using this, we can calculate the plume-induced heat flux anomaly ∆q = q− q0 relative to

the undisturbed heat flux q0 as

∆qrel(0, t) =
∆q

q0

=
q

q0

− 1

=

Tm−T0
l
− 2Tm−T0

l
∆hrel

∑∞
n=1(−1)n−1 exp

[
−n2π2

4
d2
]

Tm−T0
L

− 1

=
L

l
− 2

L

l
∆hrel

∞∑
n=1

(−1)n−1 exp

[
−n

2π2

4
d2

]
− 1

= ∆hrel
L

l
− 2

L

l
∆hrel

∞∑
n=1

(−1)n−1 exp

[
−n

2π2

4
d2

]
= ∆hrel

L

l

(
1− 2

∞∑
n=1

(−1)n−1 exp

[
−n

2π2

4
d2

])

∆qrel(0, t) =
∆hrel

1−∆hrel

(
1− 2

∞∑
n=1

(−1)n−1 exp

[
−n

2π2

4
d2

])
. (11)
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Here, we used the relations

L

l
− 1 =

L− l
l
· L
L

=
L− l
L
· L
l

= ∆hrel
L

l
and

∆hrel
L

l
=

∆hrel
l
L

=
∆hrel
L
L
− L−l

l

=
∆hrel

1−∆hrel
.

In the limits of t→ 0 and t→∞ (and thus d→ 0 and d→∞), we obtain the heat flux

anomalies

∆qrel(0, t→ 0) =
∆hrel

1−∆hrel

1− 2
∞∑
n=1

(−1)n−1 exp

[
−n

2π2

4
d2

]
︸ ︷︷ ︸

=1/2


= 0 (12)

∆qrel(0, t→∞) =
∆hrel

1−∆hrel

1− 2 lim
d→∞

∞∑
n=1

(−1)n−1 exp

[
−n

2π2

4
d2

]
︸ ︷︷ ︸

=0


=

∆hrel
1−∆hrel

(13)

Note, however, that ∆qrel is not well defined exactly at t = 0, since the exponential part

of the sum in Eq. (12) at that time would yield exp
[
−n2π2

4
02
]

= 1, and the sum does not

converge in this case. Convergence for t→ 0 can be seen either by numerically calculating

the sum over the first few thousand elements for very small t, or by “visualizing” the first

few elements of the sum in an approximate way: for n = 1, the sum element is positive

and close to 1, for n = 2 the element is negative and slightly smaller than the previous

element due to the exponential decay. n = 3 yields a positive element again, but smaller

than the previous ones, and so it continues. For increasing n, the elements get smaller due

to the exponential decay, while every odd n gives a positive and every even n a negative
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contribution. This means the sum should converge to a value of 0.5, which is exactly the

same result we obtain for the numerical approach.

Figure S1 shows the evolution of the relative heat flux anomaly (Eq. (11)) versus d (and

thus versus (the square root of) time, compare Eq. (10)) for different values of relative

lithosphere thinning. As can be seen, all curves asymptotically approach their maximum

value before d = 2, although models with more thinning require more time to reach that

maximum. The same behavior for d can be seen when plotting the relative heat flux

anomaly ∆qrel versus the relative thinning ∆hrel, see Figure S2 and Figure 4 in the main

text. Again, a value of d = 2 predicts basically the same anomalies as a value of d→∞

(shown as dashed line in Figure S2).

Finally, we can convert the value of d to a theoretical equivalent time it takes for a

stationary model to develop the respective heat flux anomaly (Eq. (11), shown in Figures

S1-S2) for a given lithosphere thinning ∆hrel via Equation (10):

t = d2 l
2

4κ
= d2 (L−∆h)2

4κ
· L

2

L2

= d2L
2(1−∆hrel)

2

4κ
(14)

As can be seen in Figure S3, the equivalent time required decreases with increasing litho-

sphere thinning (for constant d) or decreasing value of d (for constant lithosphere thin-

ning).

For Figure 4 in the main text, we assumed a constant equilibration time, a constant

value of L = 137.8 km and then used Equation (10) to calculate the corresponding value
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of d depending on the relative thinning ∆hrel:

d = 2

√
κt

l
= 2
√
κt

1

L− (L− l)
= 2
√
κt

1

L− (L− l)
· 1
L
L

= 2
√
κt

1

L− LL−l
L

= 2
√
κt

1

L(1−∆hrel)

This can be used as input to Equation (11) to obtain the lines for constant t shown in

Figure 4.

Text S2. Our 2-D stationary plate models have domain sizes of 1200x600 km (x by

z), 2-D moving plate cases are 5500x800 km (x by z) and 3-D moving plate cases are

5500x2000x800 km (x by y by z). Resolutions vary within the models due to adaptive

mesh refinements, but range between 3 x 3 km to 25 x 2 km. The chosen box dimen-

sions should ensure that all important plume-lithosphere interactions are captured and

boundary effects are minimized, while keeping computational costs limited. The choice of

Cartesian geometry does not significantly affect the results, since the Earth’s curvature is

minimal for the chosen box dimensions. For models with 3 cm/yr plate velocity, we had

to increase the domain size to 5500x1100 km to prevent the temperature anomaly from

being sheared at the bottom. The viscosity is implemented via equations (1) and (2) in

the main text, with a step-wise implementation of depth-dependence via ηj. ηj is the

scaling viscosity for the two layers we have: layer one (j = 1) reaching from the surface

down to the bottom of the asthenosphere, and layer two (j = 2) for the domain below the

asthenosphere.

The surface temperature is fixed to 273 K for all models at all time steps, while the LAB

temperature (in the reference models at 150 km depth) is initially set to either 1500 K or
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1623 K. Below the LAB, the initial temperature profile has a small temperature gradi-

ent to facilitate plume rise. Although the details of this gradient vary slightly between

stationary (respective bottom temperatures of 1623 K or 1650 K) and moving plate cases

(bottom temperatures of 1550 K and 1650 K) due to numerical stability of the solution,

these choices do not significantly affect the results of plume-lithosphere interaction. At

the bottom, we further add a temperature anomaly of Gaussian shape (Tp ·exp
[
− (x−s)2

2∗w2

]
)

with plume excess temperature Tp, width w = 500 km for stationary plates (w = 300 km

for moving plate cases) and shift s = 600 km (s = 1500 km for moving plates) to trigger

and sustain a plume.

As mentioned in the main text, estimated buoyancy fluxes for our models are about 1 Mg/s

for the 2-D and 3-D reference cases, and about 1.5 Mg/s for models with 400 K plume ex-

cess temperature. Although these fluxes are not as high as the largest ones observed on

Earth (see e.g. Hoggard et al., 2020, and references therein), they fall well within the

range of observations, which vary significantly between studies. However, despite the fact

that the plume flux is a good way to measure and compare plume strength, we do not

expect the amplitudes of heat flux and lithosphere thinning anomalies to scale directly

with plume flux. Plume flux is calculated as the density anomaly times the rising veloc-

ity, integrated over a slice through the plume: B =
∫
vrραTPdS, with density ρ, thermal

expansivity α, plume excess temperature TP , the vertical velocity vr, and teh surface

increment dS (Farnetani et al., 2018). For 2-D models, rotational symmetry of the tem-

perature and rising velocity are assumed (compare Heyn et al., 2020). As a consequence,

a change in plume flux can be related to a change in plume excess temperature, rising
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velocity, or the diameter of the plume. While the excess temperature affects anomaly

amplitudes (as discussed in the paper), a change in rising velocity may affect the plume’s

ability to mechanically erode the lithosphere, and therefore affects predicted anomalies.

we expect the plume diameter, on the other hand, to primarily affect the width of the

plume track, and will only minimally affect the amplitudes of lithosphere thinning and

surface heat flux. Therefore, for this study, we consider that plume excess temperature is

more important than plume buoyancy flux.
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Figure S1. Relative heat flux anomaly as a function of d for different values of relative

lithosphere thinning ∆hrel.
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Figure S2. Relative heat flux anomaly as a function of relative lithosphere thinning

∆hrel for different choices of d. The analytical line assumes d→∞ (see Equation (13)).
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Figure S3. Equivalent time required to develop the corresponding heat flux anomaly

(shown in Figure S2) as a function of relative lithosphere thinning ∆hrel for different

choices of d and a constant L = 137.8 km. A value of d <∞, but in practice d < 2.0, means

that the system does not equilibrate to the maximum potential surface heat flux (compare

Figure S1). Equivalent times are derived for a stationary model following Equation (14).
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Table S1. Input parameters and their ranges for the numerical models. Only one of

the 2-D stationary plate models has no dedicated low viscosity asthenosphere, otherwise

we use a step function at the bottom of the asthenosphere to increase upper mantle

viscosity relative to the asthenosphere viscosity. For models with diffusion-dislocation

creep, we further set grain size d = 1 · 10−3 m, activation energies Ediff = 373 kJ/mol and

Edisl = 530 kJ/mol, activation volumes Vdiff = 6·10−6 m3/mol and Vdisl = 1.4·10−5 m3/mol,

grain size exponent m = 3, stress exponents ndiff = 1 and ndisl = 3.5, and viscosity

prefactors Adiff = 1.5 · 1015 m3/(Pa·s) and Adisl = 1.1 · 1016 (Pa−3.5·s−1).

Parameter Reference value Range Unit

Thermal diffusivity κ 0.8 · 10−6 – m2/s

Reference density ρ 3300 – kg/m3

Specific heat capacity cp 1250 – J/(kg·K)

Gravitational acceleration g 9.81 – m/s2

Viscosity prefactor A 8 · 10−12 – 1/Pa·s

Thermal expansivity α 3.5 · 10−5 – 1/K

Constant radiogenic heating H 7.58 · 10−12 – W/kg

Reference viscosity ηref 1 · 1022 – Pa·s

LAB temperature TLAB 1500 1500− 1623 K

Layer viscosity scalings ηj [5 · 1022,1 · 1024] [1 · 1021 − 5 · 1023,1 · 1024] Pa·s

Initial lithosphere thickness L 150 100− 200 km

Asthenosphere thickness dAsth 150 0− 200 km

Asthenosphere viscosity ηAsth 1 · 1019 5 · 1017 − 1 · 1020 Pa·s

Plume excess temperature Tp 250 100− 450 K

Maximum lithosphere viscosity ηmax 1 · 1029 1 · 1026 − 1 · 1029 Pa·s

Plume life time tp 200 50− 200 Myr

Plate velocity v 1.5 0.75− 3.0 cm/yr

Activation energy E 250 100− 300 kJ/mol
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Table S2. Overview of 2-D stationary plate models used to create the data in Figure 4.

The first column defines which parameter(s) defined in Table S1 deviate from the reference

values given in Table S1. The other columns are the maximum heat flux anomaly ∆q (in

mW/m2), the maximum lithospheric thinning ∆h (in km), the reference heat flux q0 at

the time of maximum heat flux (in mW/m2), and the reference lithosphere thickness L

at the time of maximum thinning (in km).
Changed parameter(s) ∆q ∆h q0 L

– (ref. case) 7.302 51.5 26.685 158.49
tp = 100 Myr 4.016 40.6 24.909 175.98
tp = 50 Myr 3.223 43.9 24.601 189.58
Tp = 150 K 5.680 53.1 25.122 173.84
Tp = 200 K 6.526 53.3 25.899 166.64
Tp = 300 K 8.097 49.2 27.459 150.97
Tp = 400 K 10.725 46.9 29.262 136.77
dAsth = 0 km 1.349 23.2 23.526 185.92
dAsth = 100 km 7.976 54.7 26.269 161.37
dAsth = 100 km, tp = 100 Myr 4.150 41.8 26.521 161.83
dAsth = 100 km, tp = 50 Myr 2.927 39.9 24.588 190.71
L = 100 km 9.231 47.8 31.059 139.50
L = 100 km, tp = 100 Myr 4.745 34.9 33.531 166.96
L = 100 km, tp = 50 Myr 2.890 33.1 27.104 173.92
L = 200 km 5.559 57.2 22.670 186.14
L = 200 km, tp = 100 Myr 3.449 48.6 22.238 200.71
L = 200 km, tp = 50 Myr 2.741 50.5 21.953 207.58
E = 100 kJ/mol 43.664 130.4 73.077 223.91
E = 100 kJ/mol, tp = 100 Myr 33.518 130.4 61.354 223.91
E = 150 kJ/mol 25.209 36.9 45.511 99.35
E = 150 kJ/mol, tp = 100 Myr 16.665 43.5 36.711 115.60
E = 200 kJ/mol 18.160 50.3 31.614 122.64
E = 200 kJ/mol, tp = 100 Myr 11.355 51.7 29.117 144.90
ηj = [5 · 1021,1 · 1024] Pa·s 16.314 49.6 31.179 125.72
ηj = [5 · 1023,1 · 1024] Pa·s 2.159 31.5 24.177 180.62
ηj = [5 · 1023,1 · 1024] Pa·s, L = 100 km 2.600 27.3 27.629 157.31
ηj = [5·1023,1·1024] Pa·s, L = 100 km, ηmax = 1·1026 Pa·s 2.601 27.3 27.616 157.32
ηmax = 1 · 1026 Pa·s 7.345 52.2 26.638 159.14
ηmax = 1 · 1026 Pa·s, tp = 100 Myr 4.022 40.8 24.910 176.11
ηmax = 1 · 1026 Pa·s, tp = 50 Myr 3.231 44.9 24.590 190.58
ηmax = 1 · 1026 Pa·s, L = 100 km 9.250 48.3 31.041 140.24
ηmax = 1 · 1026 Pa·s, L = 100 km, tp = 100 Myr 4.735 35.0 33.535 165.41
ηmax = 1 · 1026 Pa·s, L = 100 km, tp = 50 Myr 2.890 33.0 27.104 173.92
ηmax = 1 · 1026 Pa·s, L = 200 km 5.605 57.3 22.662 186.04
diffusion-dislocation creep 31.304 80.8 38.961 160.26
TLAB = 1623 K 11.012 46.6 30.077 134.97
TLAB = 1623 K, tp = 100 Myr 5.661 31.6 30.517 132.16
TLAB = 1623 K, tp = 50 Myr 3.435 31.6 27.523 160.48
TLAB = 1623 K, Tp = 100 K 6.582 43.8 27.673 153.00
TLAB = 1623 K, Tp = 400 K 14.370 40.2 33.396 117.52
TLAB = 1623 K, dAsth = 100 km 12.445 53.1 29.626 139.11
TLAB = 1623 K, dAsth = 200 km 9.533 41.2 30.329 132.70
TLAB = 1623 K, L = 100 km 13.282 41.7 35.407 117.32
TLAB = 1623 K, L = 200 km 8.279 50.7 25.481 158.14
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Table S3. Overview of 2-D moving plate models used as data in Figure 4. Definitions

as for Table S2.
Changed param. ∆q ∆h q0 L

– (reference case) 0.620 15.90 26.834 156.79

v = 0.75 cm/yr 0.974 21.13 26.478 164.60

v = 3.0 cm/yr 0.260 8.25 27.131 154.28

ηj = [1 · 1021,1 · 1024] Pa·s 16.866 59.11 27.662 136.54

ηj = [5 · 1021,1 · 1024] Pa·s 1.821 24.10 28.132 151.42

ηj = [1 · 1021,1 · 1024] Pa·s 1.292 18.84 27.560 151.12

ηj = [5 · 1023,1 · 1024] Pa·s 0.049 8.64 27.011 163.30

E = 150 kJ/mol 11.099 48.86 27.671 141.28

E = 150 kJ/mol, v = 3.0 cm/yr 15.721 33.47 37.081 99.87

E = 150 kJ/mol, v = 0.75 cm/yr 15.274 53.13 27.771 135.98

E = 200 kJ/mol 1.624 28.23 28.207 146.12

Tp = 400 K 1.170 19.95 26.806 159.50

diffusion-dislocation creep 1.338 27.29 27.121 162.03

TLAB = 1623 K 1.209 12.02 29.854 133.87

TLAB = 1623 K, v = 0.75 cm/yr 1.717 14.58 30.126 134.01

TLAB = 1623 K, v = 3.0 cm/yr 1.268 16.45 29.972 140.04

TLAB = 1623 K, diffusion-dislocation creep 1.650 18.94 31.002 128.98

TLAB = 1623 K, ηj = [5 · 1021,1 · 1024] Pa·s 20.114 54.28 30.367 122.63

TLAB = 1623 K, ηj = [5 · 1021,1 · 1024] Pa·s,v = 3.0 cm/yr 12.386 41.60 30.202 124.5

TLAB = 1623 K, ηj = [5 ·1021,1 ·1024] Pa·s,v = 0.75 cm/yr 23.189 55.62 30.532 119.60

TLAB = 1623 K, Tp = 300 K 1.171 12.94 30.515 132.83

TLAB = 1623 K, Tp = 350 K 1.673 14.41 30.069 133.95

TLAB = 1623 K, Tp = 400 K 1.926 16.32 30.276 133.39

TLAB = 1623 K, Tp = 450 K 2.543 18.42 29.741 134.92

TLAB = 1623 K, Tp = 300 K, v = 0.75 cm/yr 2.283 16.98 29.716 136.93

TLAB = 1623 K, Tp = 300 K, v = 3.0 cm/yr 1.301 16.66 30.101 137.15

TLAB = 1623 K, Tp = 400 K, v = 0.75 cm/yr 3.056 22.30 29.833 138.57

TLAB = 1623 K, Tp = 400 K, v = 3.0 cm/yr 1.555 14.72 30.396 136.39

Table S4. Overview of 3-D moving plate models used as data in Figure 4. Definitions

as for Table S2.
Changed param. ∆q ∆h q0 L

– (reference case) 1.983 30.21 26.761 161.11

v = 0.75 cm/yr 4.192 49.55 26.198 170.12

v = 3.0 cm/yr 0.761 18.23 27.609 153.73

dAsth = 100 km 1.248 21.00 27.012 158.34

Tp = 150 K 0.945 21.00 26.727 161.00

Tp = 400 K 5.284 50.93 26.753 163.39

ηj = [5 · 1021,1 · 1024] Pa·s 3.446 34.70 28.583 148.52

ηj = [5 · 1023,1 · 1024] Pa·s 0.275 9.75 26.685 162.65

E = 150 kJ/mol 8.148 48.91 31.198 143.04

E = 200 kJ/mol 4.566 40.95 28.481 148.76

E = 300 kJ/mol 0.333 12.03 26.449 165.58
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