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The initiation
of Plate

Tectonics?

Plate tectonics

Article Talk

From Wikipedia, the free encyclopedia

"Tectonic plates" redirects here. For the film, see Tectonic Plates (film).

Plate tectonics (from Latin tectonicus, from Ancient Greek tektovikog (tektonikds) 'pertaining to
building)[! is the scientific theory that Earth's lithosphere comprises a number of large tectonic
plates, which have been slowly moving since about 3.4 billion years ao.[2] The model builds on the
concept of continental drift, an idea developed during the first decades of the 20th century. Plate
tectonics came to be accepted by geoscientists after seafloor spreading was validated in the mid-to-
late 1960s.
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around 2.8 billion years ago

Plate tectonics is generally thought to have become a well-established

global process on Earth no earlier than around 2.8 billion years ago.
22 kwi 2020

Science News
https://www.sciencenews.org » article » earth-plate-tecton...

Earth's plate tectonics may have started earlier than we thought




The initiation of what exactly?

* Present-Day / "Modern" Plate Tectonics

[ 2.5-4.0 Ga (Archean)

[I]1.8-2.5 Ga (Early Proterozoic) [l 320-530 Ma (Early-

http://downtoearthquestions.blogspot.com/2013/08 /brittle-d uctile-de formation-
in.html

http: rth k I rch/str re/crust/index.ph .

Bimodal distribution of crust typ;)efs: Slab Pull and Ridge Push (& others) Ultra-High Press-ure (URP)

Continental and Oceaniccrust as main driving forces & recycling rocks.— blueschists and
mechanisms eclogites

W. Spence (1987)


http://earthquake.usgs.gov/research/structure/crust
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Key Points:

& Long-term record of Earth evolution
preserved in continental lithosphere

» Three main tectonic modes operated
through Earth history: stagnant lid,
squishy lid and rigid, active lid (plate
tectonics)

# Stabilization of cratons at end of
Archean marks transition to plate
tectonics with supercontinent cycle
controlling subsequent changes

Supporting Information:
Suppoerting Information may be found in
the online version of this article.
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Abstract Understanding of secular evolution of the Earth system is based largely on the rock and mineral
archive preserved in the continental lithosphere. Based on the frequency and range of accessible data preserved
in this record, we divide the secular evolution into seven phases: (a) “Proto-Earth” (ca. 4.57-4.45 Ga); (b)
“Primordial Earth” (ca. 4.45-3.80 Ga); (c) “Primitive Earth” (ca. 3.8-3.2 Ga); (d) “Juvenile Earth” (ca.
3.2-2.5 Ga); (e) “Youthful Earth” (ca. 2.5-1.8 Ga); () “Middle Earth” (ca. 1.8-0.8 Ga); and (g) “Contemporary
Earth” (since ca. 0.8 Ga). Integrating this record with knowledge of secular cooling of the mantle and
lithospheric rheology constrains the changes in the tectonic modes that operated through Earth history. Initial
accretion and the Moon forming impact during the Proto-Earth phase likely resulted in a magma ocean. The
solidification of this magma ocean produced the Primordial Earth lithosphere, which preserves evidence for
intra-lithospheric reworking of a rigid lid, but which also likely experienced partial recycling through mantle
overturn and meteorite impacts. Evidence for craton formation and stabilization from ca. 3.8 to 2.5 Ga, during
the Primitive and Juvenile Earth phases, likely reflects some degree of coupling between the convecting
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Field observations

(Wide group: geochemical proxies, occurrence of
mineral deposits, facies changes in sedimentary
successions, sedimentation rates and much more.)

Will mention where applicable

First, the

methodology.
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"Proposed evidence for recycling of Archean lithosphere (e.g., Smart et al., 2016), and for geochemical
signatures comparable to modern convergent plate margins (e.g., Windley et al., 2021), lies at the
heart of many arguments as to the viability of Hadean-to-Archean plate tectonics. However, modeling
studies have shown that these signatures are also consistent with non-plate tectonic modes; that is,
lithospheric recycling need not be synonymous with subduction."

Cawood et al. (2022)
ER
Understanding

the limitations
of our dataset.

Contemporary
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Cawood et al.(2022)
Cawood et al.(2022)

= Different processes may produce similar geochemical signatures!



Caution! One last foreword

We are talking about a set of tectonic modes that may have operated throughout Earth history

= Large-scale processes

= High level conclusions

7.3.2. Squishy Lid Mode

The period from ca. 3.8 to 2.5 Ga (i.e., during phases III and IV) marks the formation and stabilization of
Earth's cratons. The beginning of this time range is marked by the preservation of granite-greenstone terranes and
high-grade gneisses in the rock record, and after 3.2 Ga there was ongoing craton formation and also widespread
stabilization of these associations leading to their long-term preservation. Voluminous mafic volcanism during
greenstone belt formation and the concomitant production of TTGs with supra-chondritic Hf signature during
ca. 3.8-3.2 Ga suggests significant input of mantle-derived, juvenile melts during this time-period (Figure 13;
Mulder et al., 2021). These rock types eventually formed the cratonic crust and were shielded from the convecting
mantle by a rigid layer of harzburgitic lithospheric mantle (cratonic keel). Formation of this continental litho-
spheric mantle during juvenile melt extraction was fundamental in ensuring the cratons' long-term preservation
(Korenaga, 2006; Pearson et al., 2021). Studies of the cratonic mantle lithosphere reveal internal layering due to
variations in the amount of melt depletion (Griffin et al., 2003; Yuan & Romanowicz, 2010). Furthermore, the
numerical models of Perchuk et al. (2020) propose that this layering is a complex multistage process that occurs
through the juxtaposition of depleted lithospheric mantle by spatially and temporally discrete processes (cf., Z.
‘Wang et al., 2022). Importantly, the formation of these lithospheric keels likely marks the transformation of a
lithosphere region undergoing intense plutonism and non-rigid, distributed deformation to a rigid and buoyant
lithosphere (cratonic core) that is a prerequisite for plate tectonics. Coincident with increased rigidity is evidence
after ca. 3.2 Ga for increased thickening of the lithosphere including geochemical data for increased depth of
crustal melting in the production of TTG's, the evolving source of felsic magmatism from melting of mafic
lower crust to TTG-like compositions for potassic granites (Moyen & Laurent, 2018; Moyen & Martin, 2012;
Nebel et al., 2018), and evidence for continental emergence above sea-level at craton scale (Chowdhury, Mulder,
etal., 2021; Reimink et al., 2020; W. Wang et al., 2021a). In addition, data from modeling proportions of juvenile
versus evolved global detrital zircon populations as well as orogen specific studies (Dhuime et al., 2018; L. Gao
etal., 2022a; S. Gao et al., 2002; X. Wang et al., 2021b) provide evidence for recycling and hence destruction of
lithospheric mantle throughout the Archean (<3.8 Ga).

We interpret the rock association and geochemical changes commencing at 3.8 Ga to result from a sluggish/active-
lid regime, involving some degree of coupling between the convecting mantle and the lithosphere resulting in

The tectonic mode that was
operational atthat point

An image of the geosphere at that pointin
Earth History

i1

Conclusionsregarding
specific processes

it 111

Field observations, geochemical

Computer Models data, geophysical data



Caution! One last foreword

* The paper presents a set of tectonic modes that may have operated throughout Earth history

* = large-scale processes
* = Highlevel conclusions
7.3.2. Squishy LidDdes

The period from ca. 3.8 to 2.5 Ga (i.e., during phases III and IV) marks the formation and stabilization of
Earth's cratons. The beginning of this time range is marked by the preservation of granite-greenstone terranes and
hlgh -grade gneisses in the mck record, and after3 2 Ga there was ongm g cratan formation and also widespread
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(Korenaga, 2006; Pearson et al., 2021). Studies of the cratonic mantle lithosphere reveal internal layering due to
variations in the amount of melt depletion (Griffin et al., 2003; Yuan & Romanowicz, 2010). Furthermore, the
numerical models of Perchuk et al. (2020) propose that this layering is a complex multistage process that occurs
through the juxtaposition of depleted lithospheric mantle by spatially and temporally discrete processes (cf., Z.
‘Wang et al., 2022). Importantly, the formation of these lithospheric keels likely marks the transformation of a
lithosphere region undergoing intense plutonism and non-rigid, distributed deformation to a rigid and buoyant
lithosphere (cratonic core) that is a prerequisite for plate tectonics. Coincident with increased rigidity is evidence
after ca. 3.2 Ga for increased thickening of the lithosphere including geochemical data for increased depth of
crustal melting in the production of TTG's, the evolving source of felsic magmatism from melting of mafic
lower crust to TTG-like compositions for potassic granites (Moyen & Laurent, 2018; Moyen & Martin, 2012;
Nebel et al., 2018), and evidence for continental emergence above sea-level at craton scale (Chowdhury, Mulder,
etal., 2021; Reimink et al., 2020; W. Wang et al., 2021a). In addition, data from modeling proportions of juvenile
versus evolved global detrital zircon populations as well as orogen specific studies (Dhuime et al., 2018; L. Gao
etal., 2022a; S. Gao et al., 2002; X. Wang et al., 2021b) provide evidence for recycling and hence destruction of
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We interpret the rock association and geochemical changes commencing at 3.8 Ga to result from a sluggish/active-
lid regime, involving some degree of coupling between the convecting mantle and the lithosphere resulting in
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The Cawood
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How far back can we look?

 "EventHorizon" = formation of Earth-Moon system after
Theia impact (ca. 4.57-4.45 Ga)

e Oldest detrital zircons = 4.4 Ga (Jack Hills, Yilgarn craton,
Australia)

* Oldestintactpiece of continental crust= ca. 4.0 Ga
(Acasta gneiss, Slave craton, Canadian Northwestern

Territories)

nature geoscience

Explore content ¥ About the journal ¥  Publish with us v

nature > nature geoscience > articles > article

Article ‘ Published: 13 August 2018

Animpact melt origin for Earth’s oldest known evolved
rocks

Tim E. Johnson B, Nicholas J. Gardiner, Katarina Miljkovié, Christopher J. Spencer, Christopher L.

Kirkland, Phil A. Bland & Hugh Smithies

Nature Geoscience 11, 795-799 (2018) \ Cite this article
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MANY conflicting theories.

nature communications
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An andesitic source for Jack Hills zircon supports onset
of plate tectonicsin the Hadean

Simon Turner &, Simon Wilde, Gerhard Wérner, Bruce Schaefer & Yi-Jen Lai
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Hadean subduction zones????

RESEARCH ARTICLE | DECEMBER 16, 2021
Early Earth zircons formed in residual granitic melts produced by
tonalite differentiation
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Partial melting of mafic crust due to late meteorite
bombardment?



"Primordial Earth's" many tectonic modes:

* Staghant-lid tectonics

* Heat-pipe tectonics

* Sluggish-lid tectonics

* Squishy-lid tectonics

Sources of data:

- Very rare crustal remnants (a.k.a. Acasta Gneiss & co.)
- Detrital zircons within younger rocks
- Chemistries of younger igneous rocks whose protoliths

were thought to have formed in the Archean
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"Primitive Earth" - Squishy-lid tectonics. —. =

* Squishy lid tectonics & heat pipe tectonics.

* Formation of the first cratons & greenstone terranes.

Data & processes:

- Mafic & Tonalite-Trondhjemite-Granodiorite (TTG) volcanism = large input of

mantle-derived melts.

- First of potassic volcanics= melting of TTG = increasing thickness of continents

- Modellingof detrital zircon populations= cratons being recycled
- Field evidence of continentsemerging above sea level en masse
- (limited) Palaeomagnetic evidence for continental drift

Cawood et al. (2022), Lenardic (2018), Richards et al. (2001)
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Recycling lithosphere # mPT!

Done via drips, delamination

Small proto-platesseparated by zones of hot & weak lithosphere



Attachment —__
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Juvenile Earth. Is this Plate Tectonics yet?... = ~

 Reminder: We still haven't left the Archean! (4.0 Ga— 2.5 Ga) "l e ’

(1.8-0.8 Ga)

/

continent =
(meT)
> mPT
p @

* Transitioning to active-lid tectonics.

(2.5-1.8 Ga)

The mantleis still much hotterthanin

Data and processes: our times = style of orogens much s
- Field evidence — many first appearances: different (impeded by slabs breaking off
o Massive dyke swarms and trench rollback)
o Granulite-faciesmetamorphism
o Linear, orogenicaccretionary belts Collisional processes dominated by N
lithosphericpeeling. i B R
c Proto-Earth
= plate (> 4.4 Ga) magm:
- rigid plate  boundaries
5 T rsrre i [l] S5 ! g TR OO ] concing e
4 3
E
A
active lid mode o &
with narrow -3 5
deformation zones g 24 narrow zones of
(plate tectonics) = » deformation
distance —
| | convecting mantle | early mafic / oceanic lithosphere ~ [li] craton / continental lithosphere

Active lid = deformation limited to plate boundaries ("stiff" continents)



"Middle Earth" Are we there yet? ...

"
(1.8-08Ga)

- Supercontinental cycle — formation of Nuna and Rodinia
- Long-lived supercontinents?

(2.5-1.8 Ga)

Modern plate

o Lots of A-type granites tectonics
o No complete "subductiongirdle" around Nuna periphery possibly e

o No chemical signatures suggesting subduction present in

o No mineral deposits associated with subduction some places! s

- BUT we have a large record of well-developed orogens!
o Thincrust g T [
o HIGH heat flux (UHT metamorphism) .

Proto-Earth
(>4.4 Ga)

Explanations?:

- Supercontinent-induced thermal blanketing weakening the
lithosphere?

- Mantleupwelling due to slab break-off / delamination
softening the "typical"?

- Or BOTH? = Protracted Supercontinent cycle AND just a
different style of plate tectonics?

o Modern plate tectonic regime (Wilson cycle) but different
orogenic style — orogens behavingdifferently
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"Modern" Plate tectonics!

* How do we finally get here? B @
- The mantleis finally cold enough — the subducting slab, weakened by bending, can poss -
finally withstand the mantle temperatures and NOT break off / delaminate! L] \o
- Steady and continuoussubduction commences. R |
- Slab pull can now drive the subduction process!
- UHP rocks form i | GreD
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Last few words -
thank you for
your attention!

The evolution of the continental
lithosphere and tectonics through
time has direct implications for the
surficial morphology of our planet
and the Earth system as a whole.

Cawoodetal.(2022)




Unique lines of evidence

40

Plate tectonics and the beginning of life on Earth?

Ostranderet al. (2021)

Proxy Rock type Continent
|:| Sedimentary features |:| Paleosol I:I Asia
| DNontraditional isotopes | Dlronformation lSouthAmerica
. Traditional isotopes | D Carbonate |:| North America
20 F lTrace metals/REEs 4 F lShaIe . lAustraIia
IAfrica
LB — - u
EOARCHEAN | PALEOARCHEAN [ MESOARCHEAN |NEOARCHEAN | | EOARCHEAN | PALEOARCHEAN | MESOARCHEAN |NEOARCHEAN [ | EOARCHEAN | PALEOARCHEAN | MESOARCHEAN |NEOARCHEAN
.. ., (MRCHEAN L., (ARCHEAN L., (ARCHEAN,
4.0 3.5 3.0 2540 3.5 3.0 2540 35 3.0 2.5
Age (Ga)

First "whiffs" of oxygen coincide with the emergence of continents above sea level.
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Old(est) crust on top of (relatively) young mantle!

Thinningallows the production of melt and creates a trap for the upwelling buoyantand strong residues resulting
from plume melting. The basal lithospherictopography, combined with the effects of plume melting, sets up a
situation where the thin spot heals through the vertical accretion of these melting residues, specifically peridotite



Fig. 3: Numerical modelling of plume residues filling a thin spot between thick
cratonic lithospheric roots.
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The presentation should be:

- Anintroductionto the topic
- Its methodology
- How thisis used for studying the lithosphere (and possibly, the asthenosphere)
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