

Gravitational Potential
For a point mass:
Newton's law of gravitation: $\vec{F} = m\vec{a} = -G\frac{mM}{r^2}$
Then the acceleration due to gravity is: $g = -G \frac{M}{r^2} \hat{r}$
The gravitational potential U_G is the potential energy per unit mass in a gravitational field. Thus: $mdU_G = -Fdr = -mgdr$
Then the gravitational acceleration is: $\vec{g} = -\vec{\nabla}U = -\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)U$
The gravitational potential is given by: $U_G = -G\frac{M}{r}$
<u>For a distribution of mass</u> : Everywhere outside a sphere of mass M: $U_G = -G\frac{M}{r}$

Centrifugal Potential

For a rotating body such as Earth, a portion of gravitational self-attraction drives a centripetal acceleration toward the center of the Earth. When viewed in the frame of the rotating body, the body experiences a centrifugal acceleration

away from the Earth's axis of rotation. Angular velocity: $\omega = \frac{d\theta}{dt} = \frac{v}{x}$ where $x = r \sin\theta$ Centrifugal acceleration: $a_c = \omega^2 x = \frac{v^2}{x}$ But $\vec{a}_c = -\vec{\nabla}U_c$, so we can calculate the centrifugal potential by integrating: $U_c = -\frac{1}{2}\omega^2 x^2 = -\frac{1}{2}\omega^2 r^2 \sin^2\theta$

Figure of the Earth

Earth's actual surface is an equipotential surface (sea level), a surface for which $U_{g} + U_{c}$ = constant. The figure of the Earth a smooth surface that approximates this shape and upon which more complicated topography can be represented. The earth approximates an oblate spheroid, which means it is elliptically-shaped with a longer equatorial radius than a polar radius.

The flattening (or oblateness) is the ratio of the difference in radii to the equatorial radius:

 $f=\frac{a-b}{a}$

For earth, f=0.00335287, or 1/298.252, and the difference in the polar and equatorial radii is about 21 km. The International Reference Ellipsoid is an ellipsoid with dimensions:

Equatorial Radius:	<i>a</i> = 6378.136 km
Polar Radius	<i>c</i> = 6356.751 km
Radius of Equivalent Sphere:	<i>R</i> = 6371.000 km
Flattening	<i>f</i> = 1/298.252
Acceleration Ratio	$m = \frac{a_C}{a_G} = \frac{\omega^2 a^3}{GM_E} = 1/288.901$
Moment of Inertia Ratio	$H = \frac{C - A}{C} = 1/305.457$

The gravitational potential of the Earth (the geopotential) is given by:

$$U_{g} = U_{G} - \frac{1}{2}\omega^{2}r^{2}\sin^{2}\theta = -\frac{GM}{r} + \frac{G}{r^{3}}(C - A)\left(\frac{3\cos^{2}\theta - 1}{2}\right) - \frac{1}{2}\omega^{2}r^{2}\sin^{2}\theta$$

where θ = colatitude (angle measured from the north pole, or 90-latitude). The geopotential is a constant (U_0) everywhere on the reference ellipsoid.

Gravity Corrections:

Many lateral and temporal variations in gravity can be predicted, and thus removed from a gravity survey to isolate the "interesting" variations.

Latitude Correction: Absolute gravity is corrected by subtracting normal gravity on the reference ellipsoid: $g_n = g_e(1 + \beta_1 \sin^2 \lambda + \beta_2 \sin^4 2\lambda)$

where $g_e = 9.780327 \text{ m/s}^2$, $\beta_1 = 5.30244 \times 10^{-3}$, and $\beta_2 = -5.8 \times 10^{-6}$.

Relative gravity is corrected by differentiating g_n with respect to λ :

 $\Delta g_{iat} = 0.8140 \sin 2\lambda$ mgal per km north-south displacement. This correction

is subtracted from stations closer to the pole than the base station.

Gravity Anomalies

After the appropriate corrections are applied, gravity data reveal information subsurface density heterogeneity. How should they be interpreted?

Isostasy

Long wavelength variations in topography are isostatically compensated at depth. This means that the excess mass in positive topography is compensated by a mass deficiency at depth.

Vening Meinesz Isostasy: In this type of isostasy, short-wavelength topography is supported by the elastic strength of the crustal rocks. The load is instead distributed by the bent plate over a broad area. This distributed load is compensated.

