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S1. Geographical categorization of oceanic basins

Figure S1 shows the geographical categorization of the Pacific, Atlantic

and Indian basins used in our study. Longitudes of 20◦E, 130◦E, and 72◦W

are used to subdivide these basins.

S2. Map views of azimuthal seismic anisotropy models

We present map views of the three azimuthal seismic anisotropy models

utilized in this study. Our goal is to identify coherent anisotropy features
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in all models, provided that they exploit different waveform datasets and

modeling strategies. We choose three depth slices at 150, 200, and 250 km

(Note that SL2016svA uses the depth slice at 260 km). Fig. S2 shows the

orientations of azimuthal anisotropy at 150 km (orange sticks) and 200 km

(cyan sticks). Background color denotes the directional difference between

the two depth slices. We also show the scenarios that incorporate the cut-

offs for associated peak-to-peak anisotropy amplitude (see main text). We

plot the orientations at locations where their amplitudes meet the criterion

at both depths. Fig. S3 displays the same inference as Fig. S2 except for

200 km (orange sticks) and 250 km (cyan sticks). We note that the orien-

tations of azimuthal anisotropy and associated depth-rotations are broadly

coherent under the Nazca plate. This holds in most scenarios, except for

YB17SVaniSVD when the cutoff is above 0.5% at 200-250 km. This deviation

is in part expected, since YB17SVaniSVD features a lower mean anisotropy

amplitude under the Nazca plate than the other models (see Fig. 4d in main

text).

S3. Depth rotation of azimuthal anisotropy models under various

amplitude-cutoffs

Here we compute depth-rotation rates for azimuthal anisotropy mod-

els under various cutoffs for their peak-to-peak anisotropy amplitudes (i.e.,

0.25%, 0.5%, and 0.75%). We recall that points that are below these cutoffs

are excluded in our estimate. Figs. S4-S6a-i depict the results for individ-

ual oceanic domain. Overall, depth-rotation rates are prominent under the

Atlantic basin in most scenarios, except for cutoff=0.75% (Fig. S6). We
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attribute this to the relatively lower peak-to-peak amplitude measured un-

der the Atlantic ocean (Fig. 4d in main text). Depth-rotation rates under

the Nazca plate are also prominent in most cases (Figs. S4-S6j-l). Taken

together, our analyses indicate that prominent depth rotations of azimuthal

seismic anisotropy under the Atlantic basin and the Nazca plate are robust

features.

S4. Impact of seismic anisotropy amplitude on inferred depth ro-

tations above 200 km depth

Fig. S7 shows the impact of amplitude-cutoffs on inferred depth rotations

above 200 km depth. In most cases, prominent depth rotations under the

Atlantic basin and the Nazca plate are seen. This is consistent with similar

calculations that extend to 300 km depth (Fig. 4 in the main text), and fur-

ther supports the notion that depth rotation of azimuthal seismic anisotropy

is a robust feature.

S5. Depth rotation of azimuthal seismic anisotropy inferred from

YB17NAB

In this section, we estimate depth-rotation rates of azimuthal seismic

anisotropy inferred from an alternate model YB17NAB (Yuan and Beghein,

2018). YB17NAB used a Bayesian framework (Sambridge, 1999a,b) to quan-

tify its uncertainties and trade-offs of anisotropy model-parameters. We re-

peat the same procedure as done in the main text, except we only include

points that are below an uncertainty provided by the model. Fig. S8 depict

our results, where thresholds of uncertainty are 60◦, 45◦, and 30◦. White
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regions denote sections that are either (i) a part of oceanic lithosphere, or

(ii) lacking as they do not meet the required threshold. Depth-rotations are

less prominent beneath the Atlantic basin when uncertainties are below 60◦

(Fig. S8a). However, when uncertainty-thresholds are 45◦ and 30◦, greater

depth-rotations are seen under the Atlantic basin, especially above 200 km

(Fig. S8b-c). This suggests that azimuthal seismic anisotropy, which im-

plies prominent depth rotations under the Atlantic, contains relatively low

uncertainty. In addition, depth-rotations under the Nazca plate weaken with

a smaller threshold-uncertainty, in particular below 200 km (Fig. S8k,m,o)

This could be due to the lack of points, where associated uncertainties satisfy

the threshold.

S6. Impact of non-Newtonian rheology on the depth rotations of

azimuthal seismic anisotropy

In this section, we test the effect of non-Newtonian, power-law rheology on

the depth rotations of azimuthal seismic anisotropy. To do so, we built upon

the formulations derived by Natarov and Conrad (2012) (see their section

A3). For convenience of readers, we repeat the start of derivation from

Natarov and Conrad (2012) by describing the relationship between stress τ

and strain rate ϵ̇ as:

τ =
1

Cτn−1
II

ϵ̇ (S1)

where C is a pre-exponential rheological factor, 1/(Cτn−1) is the effective

viscosity, τII is the second invariant of stress tensor, and n is the stress

exponent. For the simplest case, we assume that shear terms are significant
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only, and n=3, consistent with the dislocation creep in olivine (Karato and

Wu, 1993). Hence:

τ 2II = τ 213 + τ 223 (S2)

Substituting Eq. S2 into Eq. S1 for both τ13 and τ23:

ϵ̇13 = C(τ 213 + τ 223)τ13 =
du1

dx3

(S3a)

ϵ̇23 = C(τ 213 + τ 223)τ23 =
du2

dx3

(S3b)

where x3 points upward along the asthenospheric depth. Here τ13 =

C1+x3∂p/∂x1 and τ23 = C2+x3∂p/∂x2 based Eq. 1 of Natarov and Conrad

(2012), and C1 and C2 are integration constants. Substituting the expressions

of τ13 and τ23 into Eq. S3:

du1

dx3

= C

((
C1 +

∂p

∂x1

x3

)2

+

(
C2 +

∂p

∂x2

x3

)2
)(

C1 +
∂p

∂x1

x3

)
(S4a)

du2

dx3

= C

((
C1 +

∂p

∂x1

x3

)2

+

(
C2 +

∂p

∂x2

x3

)2
)(

C2 +
∂p

∂x2

x3

)
(S4b)

which is the same as Eq. A27 of Natarov and Conrad (2012). Here we

assume the Couette and Poiseuille components are perpendicular to each

other. In other words, the Couette and Poiseuille components orient along

x1 and x2, respectively. In this case, ∂p/∂x1 vanishes, and Eq. S4 can be

simplified as:
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du1

dx3

= C

(
C2

1 +

(
C2 +

∂p

∂x2

x3

)2
)
C1 (S5a)

du2

dx3

= C

(
C2

1 +

(
C2 +

∂p

∂x2

x3

)2
)(

C2 +
∂p

∂x2

x3

)
(S5b)

Next we define the following dimensionless variables:

U1 =
u1

uo

(S6)

U2 =
u2

uo

(S7)

X3 =
x3

H
(S8)

α =
CH4

uo

|∇p|3 (S9)

βx2 =
∂p

∂x2

1

|∇p|
(S10)

C1n =
C1

|∇p|H
(S11)

C2n =
C2

|∇p|H
(S12)

where H is the asthenosphere thickness, uo is the plate velocity, |∇p|2 =

(∂p/∂x1)
2 + (∂p/∂x2)

2 = (∂p/∂x2)
2 in this case. Note that C1n and C2n are

defined differently relative to the ones stated by Natarov and Conrad (2012)

(C1 and C2 in their Eq. A28). Now substituting Eqs. S6-S12 into Eq. S5:
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dU1

dX3

= αC1n(C
2
1n + (C2n + βx2X3)

2) (S13a)

dU2

dX3

= α(C2
1n + (C2n + βx2X3)

2)(C2n + βx2X3) (S13b)

Integrating Eqs. S13 with respect to X3:

U1 = αC1n(C
2
1nX3 +

(C2n + βx2X3)
3

3βx2

) + A (S14a)

U2 = α(C2
1nC2nX3 + C2

1nβx2

X2
3

2
+

(C2n + βx2X3)
4

4βx2

) +B (S14b)

where A and B are integration constants. Next we apply boundary con-

ditions U1(0) = 1, U1(−1) = 0, U2(0) = 0, and U2(−1) = 0. This gives us

following expressions:

A = 1− αC1n
C3

2n

3βx2

(S15)

0 = −αC3
1n + 1 +

αC1n

3βx2

((C2n − βx2)
3 − C3

2n) (S16)

B = −αC4
2n

4βx2

(S17)

0 = −C2
1nC2nα +

αC2
1nβx2

2
+

α

4βx2

((C2n − βx2)
4 − C4

2n) (S18)

Eqs. S15-S18 need to be solved numerically in order to determine A,

B, C1n, and C2n. Here one needs to determine the dimensionless velocity

gradient along x1 and x2 (Eq. S13), followed by the associated strain-axis
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orientation, which can be treated as a proxy for LPO over depth. For con-

ceptual purposes, we test three input |∇p| (i.e., 1, 2, and 5 Pa/m), while

keeping the remaining dimensionless variables as 1. In addition, we use Eq.

8 from Natarov and Conrad (2012) to compute the strain-axis orientation

with a Newtonian setting for comparisons.

Fig. S9 shows the resulting dimensionless flow profiles for the Couette

(left column) and Poiseuille (middle column) components, as well as the

orientations of strain axis (right column). Solid and dashed curves denote

non-Newtonian and Newtonian cases, respectively. In the non-Newtonian

setting that features power-law rheology, viscosity near the top and bot-

tom of asthenosphere would be reduced due to the Poiseuille flow gradients.

This viscosity change would affect behaviors of both Couette and Poiseuille

flows. For smaller lateral pressure gradients (e.g., 1 & 2 Pa/m), velocity pro-

files of the Couette and Poiseuille components are broadly similar between

Newtonian and non-Newtonian settings, and their strain axis orientations

exhibit negligible differences (Fig. S9a-e). For a larger lateral pressure gra-

dient (e.g., 5 Pa/m), Poiseuille flow manifests as “plug flow” (Semple and

Lenardic (2018); Ramirez et al. (2023)) with greater velocity magnitudes in

the non-Newtonian case (Fig. S9h), while the Couette component exhibits a

sigmoidal behavior (Fig. S9h). This leads to a larger depth rotation of the

strain axis, especially near mid-asthenosphere (Fig. S9i). However, as stated

in the main manuscript, we speculate that this effect will not significantly

affect the regional dependence on depth rotations, since they are tied to the

relative importance of the Couette and Poiseuille components.
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Atlantic basinPacific basin Indian basin

Figure S1: Geographical categorization for Pacific (red), Atlantic (blue) and Indian (green)

basins using 1000 points over a fibonacci sphere.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure S2: Map views of azimuthal seismic anisotropy under the oceans for SL2016SVa (a-

d), 3D2018 08SV (e-h), and YB17SVaniSVD (i-l) at 150 km (orange) and 200 km (cyan).

Background color denotes the directional difference of azimuhtal anisotropy between two

depths. For scenarios that incorporate cutoffs for peak-to-peak anisotropy amplitudes, we

only show the azimuthal anisotropy that satisfies the cutoffs at both depths.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure S3: Same as Fig. S2, except for azimuthal seismic anisotropy at 200 km (orange)

and 250 km (cyan).
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Figure S4: Depth-rotation rate of azimuthal seismic anisotropy as a function of ocean-floor

age and depth under individual oceanic basins (a-i), as well as the Pacific and Nazca plates

(j-l), using an amplitude-cutoff of 0.25%. Color-coding and notations are same as Fig. 3

in the main manuscript.
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Figure S5: Same as Fig. S4, except using an amplitude-cutoff of 0.5%. Color-coding and

notations are same as Fig. 3 in the main manuscript.
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Figure S6: Same as Fig. S4, except using an amplitude-cutoff of 0.75%. Color-coding and

notations are same as Fig. 3 in the main manuscript.
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(a) (b)

(c) (d)

Figure S7: Same as Fig. 4 in the main manuscript, except the calculations are done for

grid points above 200 km depth.

15



YB17NAB
Threshold = 60° Threshold = 45° Threshold = 30°

Figure S8: Depth-rotation rate for the model YB17NAB (Yuan and Beghein, 2018) as

a function of depth and ocean-floor age. Depth-rotation rates are computed with points

that are below the given uncertainties of 60◦ (left), 45◦ (middle), and 30◦ (right). White

regions indicate sections where inferred azimuthal seismic anisotropy is either (i) within

the oceanic lithosphere, or (ii) lacking because it exceeds the uncertainty-thresholds. The

remaining color-coding and notations are same as for Fig. 3 in the main manuscript.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure S9: Dimensionless velocity profiles for the Couette (along x1; left column) and

Poiseuille (along x2; middle column) components, as well as the resulting orientations of

the strain axis from their combined flow fields (right column). Three different dimensional

lateral pressure gradients are used as an input: 1 Pa/m (a-c), 2 Pa/m (d-f), and 5 Pa/m

(g-l). Solid and dashed curves denote non-Newtonian (stress component n=3), and New-

tonian (n=1) settings, respectively.
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