Plate reconstruction and palaeomagnetism

GEO-DEEP9300 Sofie Hildegard Ryen Centre for Planetary Habitability (PHAB) University of Oslo

- The lithosphere is broken into pieces (plates) that move over the asthenosphere
- They move along plate boundaries
 - Convergent (subduction)
 - Divergent (seafloor spreading)
 - Transform (strike-slip)

- The Earth is a sphere and the plates move over its spherical surface are rigid
- How can we define their movement about the sphere?
- Poles of rotation Euler poles
 - The displacement of a rigid body across a sphere can be represented by rotation around an axis that passes through the centre of the sphere
 - Intersection of pole rotation axis and surface

- Plate boundaries and Euler poles
- Divergent (seafloor spreading)
 - Follows great circles that intersect the Euler pole
 - Spreading velocity decrease
- Transform (strike-slip)
- Convergent (subduction)

- We can reconstruct the position of the tectonic plates at different times in the past
- When we do this we must follow a plate motion reference frame
- Relative reference frame
 - Motion in relation to something else that is moving
 - For example other moving plate
- Absolute reference frame
 - Motion in relation to a fixed point
 - For example the Earth's lower mantle or geodynamo

Plate motion reference frames

- Marine magnetic anomalies (relative back to about 180 Ma)
- Transform faults (relative back to about 180 Ma)
 - Relative plate motion reference frames, fracture zones
- Hotspot tracks (linked to mantle plumes; absolute)
 - Tracking hotspot paths as lithosphere moves over a mantle plume
- Subducted slabs (absolute slab sinking rate may differ)
 - Identifying old subductions slabs in the mantle to find places of palaeosubduction
- Deep mantle plumes (absolute edge of LLSVPs back to about 300 Ma)
 hotspots, LIPs, kimberlites
- Palaeomagnetism (absolute when linked to geodynamo)

Palaeomagnetism as a tool for plate reconstruction

Figures by Butler (1992)

Inner core

Outer core

Flow

Figures by A. van der Boon

- Normal polarity vs. reversed polarity
- Today: EMF flows from S to N
- Reversals irregular intervals
 - Only a few thousand years to flip
- Magnetostratigraphy
 - Record of polarity reversals

Figure from Mussett and Khan (2000)

- EMF flows in paths from one pole to another
- Magnetic dip and inclination
 - The inclination of the Earth's magnetic field changes with latitude
 - But not with longitude!
 - The EMF is symmetric about its axis

- The axis of EMF vs. rotation axis aligned?
 - No!
 - Magnetic declination
 - Secular variation
 - The magnetic axis will move around the rotation axis in and irregular loop
 - BUT!
 - If we average out the direction of the magnetic axis....

Figures from Mussett and Khan (2000)

• Averaged over a couple thousand years, the EMF is like a geocentric, axial dipole:

The GAD hypothesis!

 $tanI = 2tan\lambda$

"In GAD we trust"

• We assume magnetic north aligns with geographic north through time:

The GAD hypothesis! $tanI = 2tan\lambda$

- True north vs. magnetic north
- Inclination and palaeolatitude

Figure from Mussett and Khan (2000)

Palaeomagnetism

- The direction and strength of the EMF is recorded in rocks as they form
 - Magnetic carriers record the field strength and direction
 - Magnetic grains align themselves to the current field
 - Remanent magnetisation
- The changes in the magnetic field through time can be revealed and reconstructed using palaeomagnetism.
- Palaeomagnetism to reconstruct plate motions

- Rocks magnetised at the same time, but at different latitudes will reveal different magnetic directions
- But they share the same north pole!

- But they share the same north pole!
- The palaeoposition of a landmass given by the position of its north pole rather than the position of the landmass itself
- Magnetic inclination 45°N Equator 45°S

Figure by A. van der Boon

• Palaeopole:

Represents where the N pole was located in the past at a specific time

- We assume the plate is fixed in its present position and that it is the N pole that has moved not the plate
- But: GAD !!
 - The north pole of course does not move
 - We are reconstructing the position of the plate - not by showing where the plate was located at the time, but by showing where the N pole was located IN RELATION to the plate at the time
 - Apparent pole, it appears as though the north pole was in this spot at this time

Figure from Butler (1992)

- We can then move the apparent pole so that it aligns with the North pole
- Move pole+plate using an Euler pole to reconstruct plate placement
- Now we know how the plate has moved N-S and how it has rotated ...
- But not how it has moved E-W
- Limitation of palaeomagnetism

Figure by A. van der Boon

Figure from Butler (1992)

Plate reconstruction - APWPs

- To find how a plate position has change in longitude
 - A succession of rocks from the same place with remanent magnetisation
 - Many palaeopoles for the same plate
- See how to pole appears to move
 - Apparent polar wander path (APWP)
 - Use Euler pole to describe APWPs

Plate reconstruction - APWPs

- APWPs of different plates at same time relative movement
- Europe vs N.America from Ordovician-Triassic
- APWPs not the same, but similar shape
- And if we close the Atlantic?
- These paths today?
- APWPs ensamble and breakup of landmasses
 - Paths converge, overlap, then diverge again

Figure from Butler (1992)

Plate motion reference frames - united

- Marine magnetic anomalies (relative)
- Transform faults (relative)
- Hotspot tracks (absolute)
- Subducted slabs (absolute)
- Palaeomagnetism (absolute)

Figure by Butler (1992)

- We analyse a lava and find the magnetic declination and inclination preserved by the magnetic carriers in the rock
- Declination 20 degrees
- Inclination 50 degrees
- $tanI = 2tan\lambda$
- λ =30 degrees
- Pole is located at 90-30=60 degrees away

