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What is the lithosphere, in general? @epstiion?)

Lithosphere = Crust + Lithospheric Mantle

“The rigid outer part of the Earth, consisting of the crust and upper mantle.”

= The part of the Earth, which behaves only as a solid on a e
geological time scale. =

Broad range of thicknesses, from <100km to >300km

Cawood et al. 2013

Schematic cross-section through
the continental lithosphere
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Wait, aren’t these things very different?

Yes, chemically.

In the most important
geo-dynamic system
governing our planet’s
surface (Plate Tectonics),
they behave as one “layer”
that “floats” on the
Asthenosphere and interacts
with other elements of
Earth’s Plate Tectonic
system
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The most accessible, well-studied part of the geosphere!

Naturally, due to the presence of its topmost parts on the surface, we are able to
study the crust with all of the analytical methods currently available to
geoscientists.

QUESTION:

Does this apply to the lower sections of the continental crust? Which
methods can we use to investigate its structure, chemistry and physical
properties?




Answer: Yes it does, actually!

Just as with ophiolites, there is (at least one)
complete lithospheric section, fully available for
sampling and analysis on the surface: The
Kohistan Arc.

Jagoutz & Schmidt (2012)
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The chemical composition of the Continental Crust.

Let’'s zoom in!

(This is cool but ignore it) - calc-alkaline
gabbroic batholith
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The chemical composition of the Continental Crust.
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Calc-alkaline volcanism

A
F

M = Magnesium

“Alkalis” (Na, K, etc.)

lron

A

tholeiitic
FB

Na,O+K,O (wt

a - phonolite

L d
Opta A

.. -

A\E 7o ®
foidite S Np@ o o trachyte
tephriphonolite *
a . * o
®
. o 2B-R) Lo oecsecolll
phonotephrite 3 chy andesite akalin® .-

/basaltit:\_
trachy andesite

trachy ¥
basalt X~

basanite

* Tangua (present data)
= Rio Bonito (present data)

andesite
basaltic

.'/"
andesite

© Tanguéa (Valenga, 1980)
o Rio Bonito (Valenga, 1980)
© Soarinho (Valenga, 1980)

4 Itadna (Valenga, 1980)

p'i_]croi;asalt basalt

'-I T T T T T T
40 45 50 | 55 60 i 65 70
ultrabasic } basic intermediate i acidic
SiO, (Wt%)

M
Calc-alkaline trend is typical for subduction settings and some oceanic islands. It's caused by differences
in oxygen fugacity, In the “calc-alkaline suite”, fO2 is higher and magnetite (Fe304) crystallizes early,

quickly decreasing the iron content.



How do melts rise through the lithosphere, and what do

they leave behind?

If basaltic melts remain in place and undergo

fractional crystallization...

Temperature

e Bowen’s Reaction Series
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In arcs, magmas rise upwards and fractionate “on the go”
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In arcs, magmas rise upwards and fractionate “on the go”

“Primitive” (i.e. mafic) magmas stall at certain (Hiareliicragite . — E
levels in the crust because they reach a point 10 e o e =] s
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The fU”(er) p|Cture Annen et al., 2015

Conrad discontinuity:

At the level where
composition, viscosity,
temperature and thus
rheology change significantly
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Exceptions are the rule!

Fully explaining the chemical signatures and by proxy, the deep structure of
continental lithosphere found in different arcs remains the holy grail of igneous

petrology.
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Geochemical modelling has a long way to go!

Hf vs Eu anomaly of zircons

High fertility, syn-, late-syn-,post-min

Pre-min samples
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The lithospheric mantle — physical properties

Geochemistry + seismic surveying
First: seismic evidences

Tomography
Velocity discontinuity imaging
Anisotropy mapping

Receiver functions

o P-receiver functions: lower crust and Moho
o  S-receiver functions: continental lithospheric mantle + LAB



The continental lithospheric mantle — seismics

e Discontinuities

e Lower- and higher
velocity zones

e Anisotropy changes

Why?

e Phase transitions
e Composition
e Structural
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The continental lithospheric mantle — seismics

. . ARCHEAN PROTEROZOIC PALEOZOIC
e Relationship between < > > <€ >
age and thickness g e Tt 1 tile
e Higher and lower velocity
discontinuities RIGID REFLECTIVE
- 130 k
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180 km | — 1400°C
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Levin et al. (2023)



The continental lithospheric mantle — seismics

-1 -0.5 0 0.5 1

P-wave velocity anomaly (%)

e Usually higher velocity
anomalies beneath
cratons
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What about the rheology in the CLM?

e Rigid, strong, cold and dry DHferenl Sress 74 . o

e Supports cratons

e Seismic observations:
mostly high velocities

Depth [km]

Metamorphic fluids

Dry mantle with local porosity waves

200 400 600

What challenges the strength? Temperature " e
Jamtveit et al. (2015)

e Chemical properties — heat
producing elements
e Available water

To be continued...




The continental lithospheric mantle - what we don’t understand:

% How does it form?And what is the difference with the oceanic lithosphere?
% How can we study it?

% What is the age? Is it coupled with the crust or it is not?

% Why there are differences in seismic velocities? Is it heterogeneous?

% How can it be thick and buoyant?

% How can we explain “density compensation"?

% What are the chemical processes that affects its compositions?

% How can we explain continent-continent subduction?



The main proposed theory (and its weaknesses)

Plume model was invoked to explain the formation of
continental lithosphere because:

e Melting begins at high pressure and, without a thick
lithosphere, it continues to shallow depth
e high Si contents

Flood Basalts




The main proposed theory (and its weaknesses)
Flood Basalts

Plume model was invoked to explain the formation of g ;;f?sg:m»wmm%r*z
=10

continental lithosphere BUT we are not convinced...

e most geochemical characteristics of peridotites
are related to L-P melting origins

e Asingle step of high degree melting produces
H-Mg lava (Komatiite) and we will need ca. 100
km of this lava to balance the a 150 km thick
depleted lithospheric mantle

:> No worries, WE HAVE A THEORY!
(Or at least Carlson et al. 2005 have)




The density compensation hypothesis

Isopycnic ("Equal Density”) Hypothesis
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Carlson et al. 2005 - Geochemical requirements:

To have a buoyant (and thick) continental lithospheric mantle we need a less
dense and stiff layer overlying the asthenosphere. How do you produce it?

1. The rocks must contain “lighter minerals”;
2. The layer must be colder (no heat producing radioactive minerals);
3. Anddry



Carlson et al. 2005 - Geochemical requirements:

1. The rocks must contain “lighter minerals”:

Peridotites can be divided into FERTILE (Lherzolite) and DEPLETED (Hazburgite)
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Carlson et al. 2005 - Geochemical requirements:

1. The rocks must contain “lighter minerals”:

% Melt Removed
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Carlson et al. 2005 - Geochemical evidences:

_Massif and Abyssal ' Off-Cratpn ' ‘ Qratonip
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Carlson et al. 2005 - Geochemical evidences:

'Wb,

Xenoliths from different localities can be divided in:

% massif peridotites and peridotites — more

fertile (and dense)
% xenoliths from cratonic areas — depleted (and less

dense)

Does it make sense? | think so...where the
lithosphere is thicker, the density is minor.



Carlson et al. 2005 - Geochemical requirements:

2. The layer must be colder (no heat producing radioactive minerals):

—Incompatible trace elements includes radioactive elements (such as Rb,K,U)
that can produce heat.

A lithosphere that underwent (high) degree of partial melting will be naturally
(moderately) depleted in all incompatible elements.

— Unexpected high concentration of TC can be explained by refertilization or
infiltration (in xenoliths)



Carlson et al. 2005 - Geochemical evidences:
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Carlson et al. 2005 - Geochemical requirements:

Temperature °C
3. The layer must be dry: 0 [ 1000 | 2000
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Carlson et al. 2005 - Chronology - problematics:
We study the mantle through mantle xenoliths (expression of residue of partial
melting) where most of the incompatible elements are few.

BUT, most of the radiometric systems date the incompatible elements (Rb-Sr,
Sm-Nd, Lu-Hf, U-Th-Pb).

— intrinsic error in the measurements; perhaps we are measuring the
refertilization event instead of the timing of formation

Re-Os system is one of the best,
— Os is compatible during mantle melting




Carlson et al. 2005 - Chronology - evidences:

% There is general correspondence between the age of the crust and the age of
the lithospheric mantle (S-Africa Craton)

% The Slave Craton is compositionally and temporally layered (Early archean
h-depleted layer overlying a fertile younger mantle)

— Lithospheres are not forever, and they can be lost/modified during major
tectonomagmatic events affecting the continents



Density compensation hypothesis - chemical composition

Ocean basin Mobile belt Stable craton
(125 Million years) (1-2 Billion years) (3 Billion years)

- How much mantle need to be Pl Kimterte \f. Enptons \f
involved to create the crust? ===

- Major elements: 2%

- Incompatible trace elements:
30-50%

- This does not add up...




Density compensation hypothesis - chemical composition

- This does not add up...

- ... unless we look at a subduction zone

- The major elements from melting of
the mantle wedge

- Incompatible trace elements from
subducting plate




Density compensation hypothesis - chemical composition

We do not know if convergent margin volcanism alone can create the
composition found in continental crust, but it does explain:

- High degree of melting at low pressure

- Silica enrichment found in some peridotites — can be caused by Si-rich
fluids form the slab

- Removes the problem of how much komatiite/lithosphere is needed to
create the composition of the crust

- In modern mantle samples, only samples from island or continental arcs
are close to the degree of depletion we see in cratonic peridotites



Density compensation hypothesis - buoyancy and strength

= Neutrally buoyant mantle is at risk to become Isopycnic ("Equal Density’) Hypothesis
involved in the circulation of the underlying pacient confpentaly ARGl S, Coptnantl
convecting mantle

- But the SCM that underlies cratons can be very ey~ - —
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- Melt depletion creates compositional
buoyancy in residual mantle and leaves the
mantle lithosphere depleted in radioactive
heat-producing elements and in water

Density at standard Density at mantle

- Results in mantle that is cold and more viscous (surface) conditions conditions



Density compensation hypothesis - buoyancy and strength

- This compositional buoyancy causes the lithospheric mantle to resist
subduction and delamination (decoupling of mantle and crust where the
lithospheric mantle sinks into the mantle below)

- The strength from cold temperatures and lack of water allows thick sections of
mantle to remain stable and stay attached to the overlying crust of the
same age (no delamination or subduction)

- SCLM acts together with overlying crust



Density compensation hypothesis - compositional buoyancy

SCLM:

- acts together with crust to resist subsidence
- creates a buffer from erosion from below
- Adds strength to the continent

Lower mantie

If the compositional buoyancy of the SCLM becomes compromised:

- Insufficient melt removal or pervasive re-fertilisation — density stability
- SCLM enters mantle convection — magmatism — (different) ages in the crust



Why we think it is a good hypothesis:

1. The geochemistry requirements are fulfilled by the main analyses;

2. The difference in age of the lithospheric mantle and crust can be explained as
an effect of a main tectonomagmatic event that refertilizes the mantle;

3. It explains the heterogeneities in seismic velocities;

4. Itimplies subsidence (when the plate becomes too heavy) and uplift (when
the crust and the mantle detached) — can explain the sudden onset of
intracontinental magmatism (flood basalt provinces)

— |t is exactly the opposite mechanism than the mantle plume (uplift and then subsidence)
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