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Why numerical modelling?

Because we have no other choice!

Numerical modelling is the only way to investigate the evolution of the mantle and lithosphere when no
data is available.

_60° 0° 60" 120" 180" —120°
9= - —=.90

e -90 — - -
TR -60° 0" 60" 120° 180" -120

Deepest borehole ever drilled - 2m Seismic data can penetrate deeper but cannot provide
insight into Earth’s evolution

Numerical modelling uses fundamental physical laws to investigate
the Earth’s evolution over different spatial and temporal scales
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Governing equations

The governing equations for modelling of the upper mantle must fundamentally follow conservation of
mass and momentum.

By considering a small packet of material, we can derive an equation describing conservation of mass.

Continuity equation (Eulerian form): Eulerian volume z

dp

— Yy X
E—l—v-(pv)—()
In words:
Mass out — mass in = change of mass in the packet VA=
Continuity equation (incompressible): Ay
V-v=0 |
%)) (a)

Introduction to Numerical Geodynamic Modelling, Gerya, 2018
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Governing equations

Likewise, momentum must be conserved across our packet of material. This is in effect a statement of

Newton’s second law, F=ma.

Momentum equation (Eulerian form):
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In words:
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Stress on the body + the force of gravity

= the acceleration of the body
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Constitutive law

From the fundamental equations of continuity and conservation of momentum, there are several
directions we can go in.

These directions depend on the constitutive law, which relates stress to strain.

The simplest is Newton’s law of viscosity.

Newton’s law of viscosity: y dimension

boundary plate
(2D, moving) | velocity, u
(7?) = shear stress, t
T =1 '
aﬂf fluid radient du
g " Dy
In words:
Shear stress is linearly proportional to shear strain rate. boundary plate (2D, stationary)
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Newtonian viscosity

Newton’s law of viscosity:

Ov

T =7n—
ox

Why is it valid?

On very long timescales (1000's of years and more), solid rock can act as a fluid due to creep.

Typical viscosites of the upper mantle range from 1e20 Pa.s to 1e25 Pa.s in the crust.

Why isn‘t it valid?

Because rocks do still behave as elastic solids on short time scales — we know this because S waves
exist. Viscous rocks are a good assumption, but an assumption nonetheless.

More on this later.
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Applying Newtonian viscosity

Before, we had the general stress tensor. Let’s first split it into normal and deviatoric components.

O”-- :Uij+P5ij

(¥}
. 1 [0y, | Oy
Where we introduce the pressure, P. Similarly for the strain rate tensor: Ez'j = — i
2 aa:j &r;z
. . 1,
€;; = €ij 1 04 3 Ekk

Under this formulation, the Newtonian viscosity constitutive law can be written as:

A ./
0;; = 27762-]-
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The Navier Stokes equations

The result of our work is the derivation of the Navier Stokes equations in 3D for an incompressible,
viscous fluid.

0
P a—:+v-vv — V2V — VP + pg

V-v=20

This equation forms the basis for most fluid dynamics on everyday scales, where compressibility is
negligible and Newtonian viscosity is assumed.
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Solving the Navier Stokes equations

Unfortunately, the Navier Stokes equations are difficult to solve analytically - $1 million prize if you do!

Numerical solutions are required. Gateway to the world of CFD — computational fluid dynamics

Many methods available:

Finite differences

Finite element method

Smoothed particle hydrodynamics
Spectral methods
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The Stokes equations

Typically, we work with fluids that that are moving very slowly. In this case, we can eliminate the inertial
terms on the left hand side completely, giving us the Stokes equations for creeping viscous flow:

nV?v = VP + pg
V.-v=20

ali ki

The Stokes equations are linear, and much easier to solve. Analytical solutions exist for simple cases.
However, it's still not trivial and numerical solutions are still usually required.
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The Heat Equation

We can introduce temperature in our model using the well known heat equation, which is based on
conservation of heat energy:

ik
pC'p aa—t—i—V-VT —kV2T:HS

In words:

The change in heat of the body is the result of internal heating, diffusion, and advection.

Internal heating can arise from radiogenic heating, shear heating, adiabatic heating, or heat arising
from phase changes.

Diffusion depends on thermal conductivity of the material.

Advection is heat transport by bulk motion of material.
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Domain, initial, and boundary conditions

Before modelling can begin, you should carefully consider your modelling domain. This is determined
by your research question.

Boundary conditions may include free slip, stress free, or even free surface conditions.

Initial conditions are also important and influenced by your research question.

2D or 307 Cartesian or spherical?
or 3D~

Initial temperature?

Is the Earth actually flat?
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The first numerical models

Early models of mantle convection date to
the late 1960s.

“Convection in a Variable Viscosity Fluid
Heated from Within”, Foster, 1969

- Considers 2D two-layered Newtonian
viscous convection with viscosity contrast,
internal heating.
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Fig. 6. Time development of the horizontally
averaged temperature profile for an initially hot
fluid (1000°C), ® = 108, and 4 = 15 at preferred
horizontal wave number.
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Spectral methods

Early studies did not have access to fast
computers that we have today. Who would win?

One possible workaround is to use spectral
methods. Instead of representing a solution
directly, it is possible to represent it as a series:

f(z) = Z F, exp(i2mnx /L)

n=0

Instead of manipulating f(x) directly, it may be
easier to manipulate the series coefficients. The
series can be truncated if faster computational
time is desired.

Alternative bases such as the spherical
harmonics, or Chebychev polynomials may be
used.
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Tackley et al., 1993 — Spectral methods in 3D

FIG. 1 Cold downwellings for final frame of simulation. Blue surface is an FIG. 2 Hot upwellings for final frame of simulation. Red surface is an
isocontour showing where the temperature is 110 K lower than the horizon- isocontour of superadiabatic temperature, showing where the temperature
tally averaged value. Green surface is the core. A network of interconnected is 110 K higher than the reference-state adiabat. A single piume from the
linear downwellings is visible in the upper mantle, with three huge cylindrical core-mantle boundary feeds a hot region in the upper mantle. Note that
downwellings in the lower mantle, spreading out into pools of cold material most broad hot regions in the upper mantle are not directly linked to
above the core-mantle boundary. lower-mantle structures.
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Downsides of spectral methods

Spectral methods suffer from downsides which
have made their use rare in recent years.

* Gibbs phenomenon - overshoot

* Laterally varying viscosity contrasts difficult to M M f"“““"‘

implement

* Less logical to implement for less

mathematically inclined people B CE N IR
* Performance gains negated by increase in
computational power M"OUJ lu%oﬁo&vl M

* Still used in certain applications (e.qg.
magnetohydrodynamic core modelling)
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Finite differences

82 2D implementation of visco-elasto-plastic rheology
One of the simplest ways is to use finite j-1 il g2
differences. Derivatives are discretised — we can j-172 JH12 | 432
visualise this in 2D with the use of a grid. i~ O
Discretisation: alse H
i O
dy ~y1—y-1 d°y Y1 —2yo +Yy-1 #2@ O
™~ 2 ™ 2
dx Ax dx Ax i+1 O
i+3/2 O
: : " : i+2 O
Sometimes things to not ‘line up’ perfectly — a
staggered grid minimises errors. o
The result of discretisation is a linear system of ®V:4,
equations, which can be solved using one of many O W4,
existing solvers. B &y 0y T s T p k. Cp, 0, Ho
Dlnp

O P'én"én"o;;“'oja'-”n-ﬂn- Dt

Fig. 13.2 Staggered 2D irregularly spaced numerical grid corresponding to the
algorithm presented in Fig. 13.1.
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Finite element method

5 x10° solution after 20 time steps (density)
The relatively simple finite difference is extended to | |
complex geometries by the finite element method. 1.8 [T T | {2990
The region is divided into elements, and basis 16 [11L L[] 2000
functions are chosen to represent the solution in 14 11 1T o 2970
each element. The result is again a system of linear B B
equations. e 200
E- 1 1 2950
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Modern methods - IBELVIS

Plate tectonics on the Earth triggered by plume-
induced subduction initiation, Gerya et al.,
Nature, 2015
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Modern methods - StagYY

StagYY is a global scale code which can be run
in 3D using a tennis-ball like Yin-Yang grid.

A free plate surface and weak oceanic crust
produce single-sided subduction on Earth,
Crameri et al. 2012
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Determining viscosity

The viscosity of rocks depends on temperature, pressure, grain size, and stress.
Physically, rocks deform through creep mechanisms:

Diffusion creep - diffusion of atoms through the mineral lattice, either through the crystal or at
grain boundaries. Temperature, but not stress dependent.

Dislocation creep — migration of dislocations (imperfections in lattice structure). More stress
dependent.

Shear stress Shear stress
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Shear stress h Shear stress
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Determining viscosity

The viscosity of rocks depends on temperature, pressure, grain size, and stress.
A simple model with temperature and pressure dependence is the Arrhenius model:
E,+ PV,

RT

More complex models exist, such as the following incorporating grain size and stress (second
stress tensor invariant) dependence (Gerya, 2019):

1 by 4+ Vo P
ex
ADhm(O'I[)(n_l) b RT

n(T, P) = ng exp

Neff = F1

Further models based on empirical results are also available.
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Limitations of viscous rheology

Viscous rheology is limited.
* Rocks behave elastically on short time scales

* Fast processes cannot be captured by viscous
rheology.

* Cold rocks (such as in the lithosphere) exhibit
brittle or plastic deformation rather than
viscous deformation.

* Ideally, a visco-elasto-plastic rheology would
be used that can capture the ‘true’ rheology of
rocks at different time scales.
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Fig. 12.2. Reversible deformation of initially unstressed (a) elastic slab surrounded by a weak
viscous medium (Gerya and Yuen, 2007). Deformation of the slab in (b) is caused by a vertical
gravity field. When gravity is ‘removed’, the deformed slab recovers its original shape (c) while the
surrounding medium remains deformed since viscous deformation is irreversible.
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Alternative rheological models

Earlier we implemented Newtonian viscosity into our model. Let’'s consider some alternatives:

Viscous rheology - stress is proportional to strain rate ’
/I ./
0ij = 21€;; _E

Elastic rheology - stress is proportional to strain

General: 045 — U4 EkI€k] isotropic: 045 = Agijekk + 2 €5 JWW

Maxwell rheology — simplest viscoelastic rheology combining instantaneous deformation and viscous

deformation. EE

Visco-elasto-plastic rheology - Incorporates plasticity into viscoelastic models — stresses greater than

yield stress will cause plastic deformation of the material.

4 B L9
E, + PV, | orr >

RT O Peierls

\ _ d
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Numerical modelling is a necessary tool for understanding the Earth’s interior.

Conservation of mass, momentum, and heat form the fundamental basis for the equations we use.

Choice of a suitable rheology dictates the equations we end up with — linear (Newtonian) viscosity is
a suitable choice for many applications in the Earth’s mantle.

Many methods exist for solving the fundamental equations.

Limitations to the viscous approximation mean that in certain circumstances it is necessary to use
more complex rheologies.
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