Lithosphere and Asthenosphere: Composition and Evolution

GEO-DEEP9300

Valerie Maupin Clint Conrad

Geodynamic Processes of the Lithosphere & Asthenosphere

Mantle Convection in the Earth

UPWELLINGbeneath spreading ridgesDOWNWELLINGbeneath subduction zonesTHE PLATESsurface expression of mantle convectionNOT EXPLAINEDintraplate volcanism, continental uplift, ...

Convection: A Plume Experiment in Corn Syrup

Heat source at the base

The **Rayleigh Number** is a dimensionless parameter that measures the vigor of convection:

 ρ = density (3300 kg/m³)

 $g = \text{gravity} (10 \text{ m/s}^2)$

 ΔT = Temperature contrast across mantle (3000 K)

 κ = Thermal diffusivity (10⁻⁶ m²/s)

 η = Mantle viscosity (10²¹ Pa s)

Convection occurs if $Ra > Ra_{cr}$ For convection in a layer, $Ra_{cr} \sim 657$

Using these parameters for the mantle: $Ra_m \sim 7 \times 10^7$

 \rightarrow This "model" of the mantle implies vigorous convection

 $Ra = \frac{\rho g \alpha \Delta T D^{3}}{\kappa \eta} \qquad \alpha = \text{ thermal expansivity } (3 \times 10^{-5} \text{ K}^{-1})$ $\Delta T = \text{Temperature contrast across mar}$ D = Depth of Mantle (2860 km)

Let's use a computer instead of corn syrup:

Vigorous Convection:

- Thermal conduction across two thermal boundary layers
- The upper thermal boundary layer is the thermal lithosphere

 $Ra = 10^{5}$

Mantle Convection: Effect of Rayleigh Number Deschamps et al., 2010 Style and vigor of convection changes with Ra

Boundary layer $h \sim Ra^{-\frac{1}{3}}$ thickness

Plate velocity

$$v_p \sim Ra^{\frac{2}{3}}$$

Mantle heat flow $Q \sim Ra^{\frac{1}{3}}$

V

Mantle Convection: Impact of the Lithosphere

Crameri & Tackley [2016]

Lithosphere cannot break
→ "stagnant lid" convection
→ Mantle remains hot

Lithosphere can break
→ Subduction forms
→ Plate tectonics

The Lithosphere and Convection on other Planets:

Moon, Mars, Venus, Mercury: Surfaces are much older than Earth's: Probably no plate tectonics

Instead, mantle convection beneath a "stagnant lid"

Mars Topography

Model of Mars Convection

Mercury: Low Ra

Redmond & King 2007

lo: High Ra

Volcanism through a thin lithosphere

Venus:

No plate tectonics, but the entire lithopshere sometimes sinks into the mantle, resurfacing the entire planet.

Robin et al., 2007

Enceladus: Convection in solid ice

O'Neill and Nimmo, 2010

Exoplanets: Many different styles!

Tidally-locked example

van Summeren, Conrad, & Gaidos, 2011

lithosphere govern mantle convection \rightarrow Controls mantle

> 1.000e+04 1000 100 -10

> > -1

0.1

8.083e-03

Viscosity

Heat flows down a temperature gradient:

$$q_z = -k \frac{dT}{dz}$$
 $k = thermal conductivity$
typically k ~ 2-3 W/m/K

Then we can measure heat flow by measuring dT/dz

For submarine environments: Use a Heat Flow Probe Probe is 3-4 m long

For continental environments: Measure heat flow in a cave, mine

or borehole (deeper than \sim 300 m)

Temperature vs. depth in the lithopshere

→ Surface geotherms cannot continue deeper than 50-100 km

Temperature vs. depth in the lithopshere

→ Surface geotherms cannot continue deeper than 50-100
 km
 What causes these geotherms to turn?

Option 1: There is a heat source in the lithosphere

This solution could be stable in steady-state (continental regions)

Thermal modeling of a cross section across the Barents Sea

Option 2: The lithosphere is not in thermal steady-state

Time-Dependent Solution to the Heat Equation

$$\frac{\partial T}{\partial t} = \kappa \frac{\partial^2 T}{\partial z^2} + \frac{H}{c_p}$$

 $\kappa = \frac{k}{\rho c_p}$ is the thermal diffusivity for rocks, $\kappa \sim 10^{-6} \text{ m}^2/\text{s}$

The solution to halfspace cooling is the **Error Function**

Temperature diffuses across a length scale Δl in a timescale Δt according to:

 $\Delta l \sim 2\sqrt{\kappa \Delta t}$

Thermal diffusion is slow on geological timescales

The oceanic lithosphere follows halfspace cooling → Out to about 80 Million years → Lithosphere thickness reaches ~100 km

Thermal Structure of the Pacific – based on seismic observations

We expect extra heat flow and thinner lithosphere if there is a "maximum plate thickness"

GDH1 Model [Stein & Stein, 1992] An empirical relationship

Depth (m) as a function of age t (Myr) D(t) = 2600 + 365 sqrt(t) for t<20 Myr = 5651 - 2473 exp(-0.0278 t) for t>20 Myr

Heat Flow (mW/m²) $q(t) = 510 t^{-1/2}$ for t<55 Myr = 48 + 96 exp(-0.0278 t)for t>55 Myr

Why is plate thickness limited?

Small-Scale Convection – Lithospheric Drips

Cold "drips" from the lithospheric base

Return flow produces minor volcanism and uplift

Conrad & Molnar [1999]

Small-Scale Convection – Lithospheric Drips

adiabatic dry melting of asthenosphere

volcanism and uplift

Small-Scale Convection beneath oceanic lithosphere

Small-Scale Convection (SSC) beneath the oceanic plates [*Ballmer et al.*, 2015]

Richter Rolls

SSC may explain some mountains and minor volcanism.

Ballmer et al., 2010

Large variations even within a small area: So. Cal.

Large variations even within a small area: So. Cal.

LAB depths are ~70 km or less across SoCal

Large variations in heat flow despite constant LAB depth

Assume similar crustal thickness and heat production

Steady State 1D SoCal Geotherms for Standard Continental Thermal Model If Correct Imply Some Surprisingly Thick Lithospheric Keels Beneath SoCal

LePourhiet et al. [2006]

→ Remove lithosphere but the change in heat flow is delayed
 → Importance of transient solutions!

 → Thermal diffusion is slow for length scales of ~100 km
 → But ... thermal anomalies within the lithosphere can only last 10s of Myr