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Ultimately, the plate motions are the surface
expression of mantle convection.

But how, specifically, are they linked to convection?

What is the driving force?

Holmes [1931]




Plate Tectonics: What is the Diving Force?
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Driving Forces

For = Drag Force

Fsp = Slab Pull

Fcp = Continental Drag
Frp = Ridge Push

Resisting Forces

For = Drag Force

F1r = Transform Resistance
Fcr = Colliding Resistance
Fsg = Slab Resistance




Estimates of the Major Plate-Driving Forces

Ridge Push

Fy

Fm

F.. = Integrated Pressure Difference
Fpp=F,-F,-F

d w d
Fap = [ pn9zdz - [ p,9zdz - [ pgzdz
0 0 w

F., ~2x10" N/m for 50 Myr old seafloor




Estimates of the Major Plate-Driving Forces

Ridge Push

Fy

Fm

2 X 1072 N/m

Turcotte & Schubert [2002]

Slab Pull

h
F.» = Excess weight of slab = ApghL

m
F.. ~3x10"° N/m for 50 Myr old slab

Fop = (50 k—%)(1 os—”Z)(75km)(600km)




Estimates of the Major Plate-Driving Forces

Ridge Push
Slab Pull

Fy

Fm

h

2 X 1012 N/m
2 X 1013 N/m

Turcotte & Schubert [2002]

Basal Tractions

F5r = Integrated Shear Stress Beneath Plate

4 10cm/ yr
For = —L=(10*Pas
7 i h ( )( 50km

Fsp ~ (2MPa)(5000km) =1x10"° N/m

)5000km




Estimates of the Major Plate-Driving Forces

Ridge Push

Fy

Fm

2 X 1012 N/m

(much smaller)
Turcotte & Schubert [2002]

Slab Pull

2 X 1013 N/m

Basal Tractions

1 X 1073 N/m




Plate Motions:
A force balance
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Surface
Plate Motions
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Plate Motions:
A force balance
between:

(1) Gravity acting
on mantle
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heterogeneity
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(2) Mantle
deformation by
viscous flow



Observation:

Hypothesis 1:

Hypothesis 2:

Motions

Relative Velocity Magnitude
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Subducting Plate Speeds _

3.5
Overriding Plate Speeds

Slab pull speeds up the
subducting plates

Larger basal traction slows down the
overriding plates



Slab Pull

estimated from the
Lallemand et al.
[2005] dataset.

5 x 103 N/m
Slab Pull Force

Hypothesis 1:  Slab pull speeds up the
subducting plates



How large is the slab pull force?

Maximum pull from slabs:
Fpull = 5x1013 N/m

Assume a plate thickness:

h =100 km ‘o
Then the pull stress is:

Opull = 500 MPa ?20
Slabs may not be strong | <
enough to support all g%

of their own weight!
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Kohlstedt et al. [19995]



Basal Tractions

Compute from
Global Mantle

Circulation
Models

1000 km Depth -
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Conrad & Behn [2010]




Basal Tractions
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Traction Magnitude (MPa)

Hypothesis 2. Larger basal traction slows down the
overriding plates



Basal Tractions
depend on
lithosphere
thickness
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Basal Tractions
depend on

lithosphere
thickness Ratio of Traction Magnitudes
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Ratio (Lateral Visc. / Layered Visc.)

Conrad & Lithgow-Bertelloni [2006]



The link between plate motions and
mantle flow depends on rheology

1. Coupling of the slabs to the subducting plates
— Depends on slab strength

2. Coupling of mantle flow to the surface plates
— Depends on viscosity beneath the plates

Problem: Neither is well constrained!

Plate Motion
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Torque Balance

Driving Torques Q,.

Plate 1 Plate 2
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Resisting Torques M, @,
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Predict Plate Motions

Torque Balance Approach
[Lithgow-Bertelloni & Richards, 1998]

Compute the driving forces for
each plate:

Four  Slab Pull Force
Fiow  Basal Tractions (from flow)

Apply to each plate to obtain the
torques Q

Plate motions are determined by
a torque balance:

~ 1
w; = Mij (Qﬂow + qun)i



Plate velocity ratio = 3.5 Slab pull fraction = 100
Relative Velocity Magnitude Piate vel. ratio: 3.2 Misfit: 0.23
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Plate velocity ratio = 3.5
Relative Velocity Magnitude Piate vel. ratio: 3.2 Misfit: 0.23
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Plate velocity ratio = 3.5

Relative Velocity Magnitude

Slab pull fraction = 50%
Plate vel. ratio = 3.6 Misfit = 0.21
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Plate velocity ratio = 3.5

Relative Velocity Magnitude  pjate velocity ratio = 3.7  Misfit = 0.24
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Which model works best?
Assume upper mantle viscosity: 3-6 X 1020 Ps s

(b) No Asthenosp
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The Major Plate-Driving Forces:

1. Slab Pull: Slabs are partially coupled to plates
(about 50% of upper mantle slab weight)
=>» speeds the subducting plates

2. Basal Tractions: Plates motions are coupled to mantle flow,
but through a low-viscosity asthenosphere
=>» partly decouples cratons from flow

Plate Motions

C— \ asal Tractions

Low-Viscosity Asthenosphere
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Plate motions are intimately Conrad & Behn [2010]
linked with mantle flow.




What about “super-weak” asthenosphere?

Becker [Gcubed, 2017]

b) shallow, sub-oceanic asthenosphere

B

log+0(M/Mo)
2




For global tectonics,
asthenosphere viscosity
makes a difference...

“‘Super-weak”
viscosity in the
asthenosphere:
Viscosity reduced
by a factor of 100 -

c) surface velocities, slabs and upper mantle anomalies
r, = 0.916
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Becker [Gcubed, 2017]
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Can we understand the time-dependence of tectonics?

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

Age of Oceanic Lithosphere [m.y.]

Seton et al. [2012]
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Dots: GPS stations Strain Rate Model: Kreemer et al, [2014]
White: 50 assumed rigid plates Grey: diffuse deformation
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Can observe lithospheric stresses directly?

Stresses are generated by:
—> Tractions from mantle flow
- Stresses transmitted elastically within the plates
- Topography

Observations are from:
- Borehole breakouts - Hydro-fractures
- Seismic focal mechanisms - Geologic indicators
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Stresses from topography
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Lithgow-Bertelloni & Guynn [2004]
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Conclusions

-> Plates motions are driven mostly by:
e Slab Pull

 Mantle Flow (via basal tractions on plates)
-> Plates and mantle are linked through the asthenosphere.

Questions:
* What is the viscosity of the asthenosphere?
* How rigid are the plates?
* How can we explain the lithosphere stress field?
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