Lithosphere asthenosphere
boundary

Current state of knowledge



History of the Lithosphere-Asthenosphere Boundary
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e The terms “lithosphere” and “asthenosphere” were
first coined by Barrel (1914) to explain surface

topography

e First evidence for the asthenosphere came from
observations of low velocity “shadow zone”,
interpreted as the asthenosphere low velocity zone
(LVZ)

e Continued investigation of the LVZ from body wave
arrival times indicate LAB depth varied with tectonic
environment and continental or oceanic lithosphere

e Following the theory of plate tectonics, for a time the
LAB was determined by half-space cooling models

The shadow zone with EQ depth
(Gutenberg, 1948)



Thermal models of the lithosphere-asthenosphere boundary W PR o i e e
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Artemieva (2006) produced a
thermal model for the continental
lithosphere based on heat flow
measurements  constrained by
xenolith data.
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Strong statistical relationship between
tectonic age and the depth of the LAB.

Temperature is a dominant control on
lithosphere thickness!
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"However, for a given age there is a
large variability in LAB depths by 150
km.

Other processes must be controlling
the thickness of the lithosphere

Important characteristic: In the thermal model, there is a gradual transition from the
lithosphere to asthenosphere over tens of kilometres



Thermal thickness for oceanic crust

Thermal Thickness 1300 °C
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Hasterok (2013) developed new ocean cooling model
that filters out the hydrothermal effect.

Improved correlation with heat flow measurements
estimates a shallower lithosphere-asthenosphere
boundary than previously estimated (90 km)

Lithospheric Thickness



Recent seismic observations - isotropic

e Surface wave
tomoqgraphy

e Scattered waves

e Active source
seismic reflection
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Recent seismic observations - isotro

e Surface wave tomography

Difficulty of getting an exact thickness

The exact shape of shear wave velocity-depth
profiles differs

Surface waves have broad depth sensitivity
kernels resulting in gradual velocity drops in
depth

The age-averaged profiles result in smooth,
monotonic variations with age as predicted by
thermal models, individual transects show
greater variability

(©)

250

300

Jackson & Faul, 2010
: T ) T & 1

Fr:
T

ench et al., 2013
T T

T T
(b)
- s 0 - 10 Myr )
s 10 - 40 Myr
e 40 - 100 Myr
B 100 - 170 Myr |
‘
Y
] [P M. W NI | | | | ] |
4 42 44 46 48 4 42 44 46 48
Vs km/s Vs km/s
Nishimura & Forsyth, 1989 Regional Studies
T ’ T i I i T T I < 1 L I : I ! T
(c) (d)
= 0-4Myr e 0= 10 Myr
—4-20Myr e 15 - 30 Myr
s 20 - 52 Myr 0 - 40 Myr
B 52-110 Myr| 70 Myr
110 + Myr
[ : 1 1 L 1 R i i Tl Bl
4 42 44 46 48 4 42 44 46 48
Vs km/s Vs km/s




50 :t:
Recent seismic observations - isotropic =

e Surface wave tomography 0
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Recent seismic observations - isotropic

e Surface wave tomography
o Difficulty of getting an exact thickness

The exact shape of shear wave velocity-depth profiles differs

Surface waves have broad depth sensitivity kernels resulting in gradual velocity drops in
depth

The age-averaged profiles result in smooth, monotonic variations with age as predicted

by thermal models, individual transects show greater variability
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Recent seismic observations - isotropic
e Surface wave (a) Scattered Waves
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Recent seismic observations - isotropic
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Recent seismic observations - anisotropic

Seismic anisotropy

LAB as the transition with depth from one fast direction to another
Generally, this transition gets deeper with age (Maggi et al., 2006)
Challenges

o depth constraints coming from surface wave observations
o fast-axis might not be aligned with APM in the asthenosphere
o regional studies do not necessarily support simple fossil spreading orientations in the sub-
crustal lithosphere
e [uture
o Need to simulate anisotropic fabric development under different deformation mechanism
o Need more observational constraints for anisotropy

e Can be sharp with a shear zone but no tight observational constraint



Comparison

e QOverall agreement that lithosphere thickens with age shows that temperature
dictates the thickness of lithosphere to first-order

e Oceanic lithosphere
o General agreement between surface wave and scattered wave depths - sharp
o Variabilities in depths from different studies and methods
e Continental lithosphere
o  Average or individual
o  Sharp discontinuity?
o Influence of complex structures




Effective Elastic Thickness
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Comparison

e Overall agreement that lithosphere thickens with age shows that temperature
dictates the thickness of lithosphere to first-order

e Oceanic lithosphere - near the 1100 C isotherm
o General agreement between surface wave and scattered wave depths - sharp
o Variabilities in depths from different studies and methods
e Continental lithosphere
o  Average or individual
o  Sharp discontinuity?
o Influence of complex structures
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Comparison

e Overall agreement that lithosphere thickens with age shows that temperature
dictates the thickness of lithosphere to first-order

e Oceanic lithosphere
o General agreement between surface wave and scattered wave depths - sharp
o Partial melt and lateral heterogeneity
e Continental lithosphere
o  Average or individual
o  Sharp discontinuity?
o Influence of complex structures



Pac. Ocean, Lizarralde et al., 1995
Sup. Prov., Schultz et al., 1993

Magnetotellurics OIE. N
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e MT images electrical conductivity within the Earth based 1001 y
on telluric currents from natural sources.

e Conductivity depends on melt fraction, amongst other - 200} ]
things. P

e The lithosphere tends to be more resistive than the §3OO i ]
asthenosphere.

e Base of resistive continental lithosphere measured
between 50 km and 400 km.
Base of oceanic lithosphere is thin, up to 100 km
500

Discrepancies between MT and seismic data up to 75 km B A r 3 y
Log Conductivity S/m

400 |

Figure 11. Electrical conductivity profile examples. The result from
Superior Province is shown by the purple lines (Schultz et al., 1993), and the
result from the Pacific Ocean is shown by the red line (Lizarralde

et al., 1995).



Magnetotellurics
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Asthenospheric melting

e Melting is dependent on temperature, pressure, composition, and volatile (particularly water) content.
e Katz et al. 2003 (and others) use these 4 parameters to develop melting models based on

experimental data.
Anhydrous pseudo-phase diagram

0 &, ! \ A
Since the temperature of the asthenosphere is typically A ‘ N, \
1 3 R Notos : ‘.\
below the solidus there are essentially two ways ! \\ ; N B
; ! : N, x
melting can occur: g N N, e
© N3 Ly o
) ) %3 '4\5"\ \‘,,. \
e Pressure melting through upwelling o e \,\ \
. . =4 SN A
e Melting through the presence of volatiles (water) 2 e \_\ \‘
o} ; o
5__ Bk b s s e e \ s ‘. \
Perhaps less than 1% partial melt fraction required to . ! .,\\ I\.\ “
| == Solidus SN ) :
explain seismic LVZ and reduced viscosity in the ik Kb % \
7H+ Hirschmann 2000 solidus R SERERE "::'. : \'_ PR f
asthenosphere. = + Langmuir 92 solidus ' 4 A \
8 ' - Mc]Kenzie&Bickle sclxlidus ; h :
1200 1400 1600 1800 2000

Temperature, C



Melts in the asthenosphere below oceanic crust
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revalence of melt in the asthenosphere
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e The prevalence of melt near mid ocean ridges is strongly debated between authors.

e Partial melt likely to be responsible for low velocity zone (LVZ) in the asthenosphere.

e Presence of melt strongly decreases viscosity.

e Different models of melt migration can be used in numerical studies
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Some studies interpret the existence of regions of melt beneath subducted slabs as a result

of upwellings. These regions may be layered in place, or ‘ponded’ below impermeable layers.
Melt migration occurs much faster than geological time scales.




Petit spot volcanism
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Geodynamic implications of the LAB

: : : : : 100
e Plate tectonics requires a relatively low viscosity

asthenosphere to operate.
e Viscosity contrast across the LAB 2-3 orders of magnitude. 55

e Small scale convection is possible in a less viscous £
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Summary
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Summary

e Temperature contrasts alone are insufficient to explain complexity of LAB.

e Seismic data reveals a low velocity zone at LAB.

e Magnetotellurics demonstrates relatively high conductivity of the
asthenosphere relative to the lithosphere.

e Prevailing theory is that partial melts are widespread in the asthenosphere,
resulting in lower seismic wave velocities and decreased viscosity.

e Relatively low viscosity of the asthenosphere a key feature of modern day
plate tectonics.



