Gravity anomalies

Åse Hestnes 01.11.2021

GEO-DEEP9300 course 2021

- 1. Introduction
- 2. What is gravity?
- 3. Gravity anomalies and corrections
- 4. Large-scale gravity and isostasy

Gravity surveying

- Measuring the variations in the Earth's gravitational field caused by differences in the density of subsurface rocks
- What is really measured is the variations of acceleration due to the gravity

When do we use gravity surveys

Source: NASA

- Changes in mass of ice caps
- Changes in water resources
- Ocean current transport
- Sea level change (T and mass changes)
- Atmosphere-ocean mass exchange
- Internal Earth forces (tectonics)

What is gravity?

- All things with a mass is attracted to each other
- Newton's law of attractive forces

$$F = G \frac{m_1 m_2}{r^2}$$

Where F=attractive force, G=gravitational constant (6.672 × $10^{-8} m^3/Mg \times s^2$), m1 and m2 are small masses in tonnes, r is distance of separation in m

What is gravity?

- To measure gravity on Earth, we also need to consider its mass, M_E
- The attraction of M_E on a smaller mass m_s on Earth surface would be

$$F = G \frac{M_E m_s}{R_E^2}$$

Where F=attractive force, G=gravitational constant (6.672 × $10^{-8} m^3/Mg \times s^2$), and R_E is the radius of the Earth

• We use the acceleration that the force on a surface mass produces $F = mass \times acceleration = m_s \times g$

$$F = m_s g = G \frac{M_E m_s}{R_E^2} \rightarrow g = G \frac{M_E}{R_E^2}$$

Where g=acceleration due to gravity, G=gravitational constant (6.672 × $10^{-8} m^3/Mg \times s^2$), M_E is the mass of the Earth and R_E is the radius of the Earth

- And $M_E = 5.97 \times 10^{24} kg = 5.97 \times 10^{21} Mg$
- Unit most often used is milliGals: $1mGal = 10 gravity units = 10^{-5}m/s^2 \sim 10^{-6}g$

$$g = G \frac{M_E}{R_E^2}$$

А

В

m3)

What controls *g*

- Variations and size of g will depend on density
- The signal on a subsurface body will vary with density, lateral density variations, extent, dept
- Average density of the Earth is 5.5 Mg/m3

	Density (Mg/r
Unconsolidated clay sand, dry	1.5–2.6 1.4–1.65
sand, saturated	1.9–2.1
Sediments chalk coal, anthracite coal, lignite dolomite limestone salt sandstone shale	1.9–2.5 1.3–1.8 1.1–1.5 2.3–2.9 2.0–2.7 2.1–2.6 2.0–2.6 2.0–2.7
Igneous and metamorphic andesite basalt gneiss granite peridotite quarzite slate	2.4–2.8 2.7–3.0 2.6–3.0 2.5–2.8 2.8–3.2 2.6–2.7 2.6–2.8
Minerals and ores barite chalcopyrite galena haematite ore magnetite ore pyrite sphalerite	4.3–4.7 4.1–4.3 7.4–7.6 4.9–5.3 4.9–5.3 4.9–5.2 3.5–4.0
Other oil water	0.6–0.9 1.0–1.05

Gravity anomalies

... is the difference of *g* above or below its value in the surrounding area

Small-scale gravity

• Used to find subsurface bodies or structures, e.g. faults, ore, pipes, which density will differ from the surrounding density

Measuring g on small scales - gravimeter

Mussett & Khan, 2000

Corrections

- Conversion of reading
- Drift
- Latitude
- Topographic corrections
 - Free-air correction
 - Bouguer correction
 - Terrain correction
 - \rightarrow Bouguer anomaly

→Marine surveys – Free air anomaly

Modelling and interpretation

- Inversion models
 - Non-uniqueness
 - The dependence on density contrast

Mussett & Khan, 2000

Large-scale gravity

- Closely linked to the shape of the Earth
- Major use is to measure how far an area is from isostatic equilibrium

lsostasy

Gravitational equilibrium between the lithosphere and the mantle

Isostatic equilibrium

The closer a region is to isostatic equilibrium, the smaller the variations of *g* will be

Isostasy and buoyancy

Airy and Pratt models of isostasy

- Airy model
 - Same density
 - Different thickness
- Pratt model
 - Different density
 - Blocks float at same level
- For both height stay unchanged

Mussett & Khan, 2000

Mussett & Khan, 2000

How can the mantle change by load?

Flexural deformation

- Small loads supported by the strength of the lithosphere
- Larger loads are supported by a combination of the lithospheres strength and buoyancy
- The largest weights (mountains, ice sheets, sedimentary basins) are mainly supported by the buoyancy

Flexural deformation

Free-air anomaly. Watts et al. 2013

Elastic thickness, T_e

Proxy for the strength of the lithosphere

 \rightarrow T_e decrease with load age and increase with plate age

Geoid

- Geoid the surface of equal gravitational potential of a hypothetical ocean at rest
- GOCE Gravity field and steady-state Ocean Circulation Explorer
 - Measuring Earth's gravity gradients at satellite height
 - Will retain the lithospheric and underlying density signals

Integrated forward modeling

