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Geodynamic Processes of the Lithosphere & Asthenosphere

All Geodynamic Processes involve a force balance:

(Density * acceleration) =
(body force) +
(gradient of stresses) +

(material deformation)
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Geodynamic Processes of the Lithosphere & Asthenosphere

All Geodynamic Processes involve a static force

balance (except earthquakes):

(Density * acceleration) =

Acceleration is negligible

Usually gravity

(body force) +

Internal forces within the material

(gradient of stresses) +

deformation depends on rheology

(material deformation)

- Body forces drive geodynamic processes
- Material deformation resists the body forces



Apply a constant stress to a material: How does it deform?
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Apply a constant stress to a material: How does it deform?
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Types of rheology that are important for the lithosphere:

1. Elastic Deformation: Stress ~ Strain
2. Viscous Deformation: Stress ~ Rate of Strain

3. Brittle Fracture Strain = infinity (discontinuity)



For a viscoelastic material:

Elastic Deformation: Viscous Deformation:
(stress) = E (strain) (stress) = n (strain-rate)
E = Young's Modulus n = Newtonian Viscosity
E = 70 GPa (typical rock) n = 10%° Pa s (typical mantle)

Maxwell Time ~ 2n /| E ~100 years
The stresses relax over this timescale

Shorter than 100 years: Longer than 100 years:
Elastic deformation Viscous deformation



Elastic Response of the Earth to Surface Loads:
Recent Ice Melt: Instantaneous Response
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Conrad [2013]



Viscous Response of the Earth to Surface Loads:
Postglacial Rebound after Last Ice Age (~10* years ago)
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Paulson et al. [2007]



Viscous Response of the Earth to Surface Loads:
Postglacial Rebound after Last Ice Age (~10* years ago)

Flexing
Ice upward
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We can determine Earth’s viscosity

profile using postglacial rebound.
Paulson et al. [2007]



Viscosity Profile of the Lithosphere and Asthenosphere
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Viscosity Profile of the Lithosphere and Asthenosphere
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Timescale of loading determines the Earth’s response:
elastic vs. viscous

Short term Intermediate Long term
0-120s ~10yr ~10 kyr >1 Myr
e.g., coseismic e.g., postseismic e.g., glacial isostatic e.g., volcano

deformation deformation rebound flexure

Lithosphere

SO

Asthenosphere Elastic

Viscoelastic

. Inviscid fluid

Initial Transient regime Steady-state
Elastic half-space Elastic plate on Elastic plate on
a viscoelastic half-space an inviscid fluid

Watts et al. [2013]



How does an elastic plate respond to an applied load?
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Width of “moat” scales with the elastic thickness



Many different volcanic loads, and subduction bending
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How does an elastic plate respond to an applied load?
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Use seamounts as loads to measure the elastic thickness

et al. [2017]
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Elastic thickness
Increases with plate age
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Estimate elastic thickness from the
seafloor deflection around seamounts



Elastic thickness Elastic thickness
Increases with plate age follows an isotherm
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P

Force Balance Equation for a load on an elastic plate:
d*w |
D==+(p,=p)ew=pigh

D 1s the (flexural) rigidity, 7, is the elastic thickness

v 3
p=_=l :
12(1-v?)




Force Balance Equation for
a load on an elastic plate:

P

d*w

D
dx?

+(p,, — o )gw= p,gh

Assume periodic solution: w = w; sin(kx)

Wy =

P

Ap +

Dik?
g

h 0

Here Ap=p,,-p,and £=27/4,
where 4 is the wavelength




P

Assume periodic solution: w = w; sin(kx)

P A=~ 5/
W, = /70 Here Ap=p,-p,and £=27/4,

Ap + Dg : where A is the wavelength

Elastic flexure at short wavelengths: Elastic wavelength
A<<As 2> wolissmall | \ ~ 400 km if T,=25 km

No elastic strength at long wavelengths:
A>> AN, 2> wqy=hyp/Ap (isostatic compensation)




Elastic Thickness of Continental Lithosphere:

- Strong Cratons
Based on
rheology 200
model 180
160
140
120
Based on 100
topography 80
to gravity 60
ratio 40
Isostatic topography 20
- No gravity anomaly kmo
Elastic support

- Gravity anomaly
correlates to topography Tesauro et al. [2012]
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Conclusions

 The top (cold) part of the lithosphere behaves elastically
e Elastic stresses can support loads up to ~400 km wide

e Lithosphere flexure depends on elastic thickness

e Elastic thickness depends on temperature and history
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