Body Wave Tomography

Annie Jerkins

Outline

- Background what is body wave tomography?
- Errors.
- Resolution.
- Interpreting subsurface properties.
- Example.

Tomography

- Tomography, Greek: "Slice picture".
- Applied in a large number of sciences.
 - Radio astronomy: Used to image remote regions of the universe.
 - Medicine: Map tissue in the human body using computer aided tomography (CAT). Method received Nobel Prize in physiology and medicine (1979).
- Seismic tomography: Technique used to image the subsurface with seismic waves from for instance from earthquakes or explosions.
- Seismic tomography usually resolve for Vp, Vs velocities and Q (quality factor, attenuation).
- Several types of seismic waves can be used to image the subsurface e.g. **body waves**, surface waves, ambient noise.
- Aim: Find a 2D/3D model that image the subsurface. The 2D/3D model can for instance be used to interpret subsurface properties (e.g lithology and fluid saturation) and improve earthquake locations.

Figure 13. Selected cross sections through the LLNL-G3Dv3 model showing structures beneath South America

Body wave vs. surface wave tomography

- Body waves travels through the earth's interior, while surface waves travel along the earths surface.
- Surface wave tomography: based on dispersion curves to get S-wave velocity model.
- Body wave tomography: based on arrival times to get P or S-wave velocity model.

Body wave tomography - concept

- Seismic energy travels from earthquake/source to stations at the surface.
- Assume an initial model, often a 1D-velocity model is used.
- Travel time residual: Difference between observed and predicted travel time (δt).
- If the initial 1D model is close to correct the travel time residuals at the stations are small.
- If the waves pass through an anomalous structure, the travel time residuals increase.
- The anomaly can be reconstructed using overlapping rays travelling from different angles.

Tomography – How is it done?

- Model is parametrized into cells or any other type of basis function.
- Travel time can be estimated (assume rays):
- Assume a simple model, most often a 1D model.
- Use model for locating earthquakes.
- Ray paths are calculated from the earthquake locations to the stations at the surface.
- Weighting estimated for each ray. In block models, this represents the penetration length for the ray in each cell. The weighting and ray paths are collected in a large matrix (G).
- Model equation: **d** = **Gm**, travel time residuals = (ray path and weighting) x (perturbations relative to reference model).
- Iteration to solve the inverse problem. Ray paths and earthquake locations depend on velocity model, non-linear solution.

 $\Delta T = \int \frac{1}{V(\text{ray})} d\mathbf{l} = \int S(\text{ray}) d\mathbf{l}$

Lees, 2007

Error

- Important to address the issues related to errors and resolution in tomographic models.
- Apply approximate methods to find error and resolution since the inversion matrices involved are so large.
- Noise and uncertain phase picks. Introduce uncertainties in geophysical models.
- Waves from almost same source location may produce different travel time residuals at the same station. Can cause fluctuation.
- Damping and filtering:
 - To avoid large fluctuations the models are damped or filtered ("regularization").
 - Regularization: mathematical method for controlling effects of errors.
 - Exclude sharp boundaries within the model.
 - Put limits on on perturbation strength.
 - Tomographic models smoother than real life situations.
 - Tomographic model is seen as the minimum strength of the perturbations.

Resolution

- Resolution depend on frequency and ray coverage.
- Frequency: higher frequencies sample smaller structures.
- Ray coverage:
 - Station distribution, e.g. more stations onshore than offshore.
 - Earthquakes not evenly distributed in the subsurface, often occur in clusters.
 - May oversample some regions and exclude other regions. This may cause bias in the models.
 - Largely solved by down-weighting paths in the model.
 - Rays often follow regions with higher velocity, can result in shadow zones in the model.
- Checker board tests can be used to test resolution of tomography models.

Rawlinson et al. (2014)

Resolution – checker board test

- Checker board tests can be used for resolution/sensitivity analysis.
- Check how well features are resolved in the tomographic model.
- Idea:
 - Use a synthetic test model, often a grid of perturbations ("checker board"). Generate an artificial data set using the same station configurations, sources and phase types as in the original tomographic model.
 - Inversion that aim at reconstructing the checker board.
 - Check how well the grid of perturbations are resolved.
 - This gives an idea of model sensitivity and how well the model resolves geological structures.
- Limitations:
 - Do not take into account real noise.
 - Using the same parametrization and assumptions as in the original inversion, shows an ideal image of resolution.
 - Results depend on which synthetic test model is used.

Simmons et al. (2012)

dVp (%)

Local and teleseismic body wave tomography

- Both type local and teleseismic body waves can be used to interpret a velocity structure.
- Teleseismic: Only the structures beneath the stations that contribute to travel time perturbations plane wave assumption.
- Local: Whole ray path contribute to arrival time perturbations.

Interpreting subsurface properties from tomographic models

- Indirect measurements.
- An example of how properties can be interpreted from seismic images:
 - Higher temperatures, lower Vp, Vs velocities.
- Challenging as various properties may give rise to the same seismic image.
- Need some "a prior" information from for instance laboratory experiments.
- Labs represent different conditions and scales than real life.
- Properties of the subsurface can be better resolved combining body wave tomography with other methods.

Example: injection test performed at the Geysers geothermal field in California. AusArray project, Imaging the lithospheric mantle using body-wave tomography

Summary

- Body wave tomography is used to image the subsurface.
- There are some limitations to the method:
 - Regularization applied to avoid large fluctuations. Limits perturbation strength and excludes sharp boundaries.
 - Ray coverage.
 - Non-linearity and non-unique solutions.
- Provides an indirect measure of subsurface properties.
- Can be combined with other methods to improve our understanding of subsurface properties and geological conditions.

References

Estève, C., P. Audet, A. J. Schaeffer, D. Schutt, R. C. Aster, J. Cubley (2020). The upper mantle structure of northwestern Canada from teleseismic body wave tomography. *J. Geophys. Res*, *125*, e2019JB018837. <u>https://doi.org/10.1029/2019JB018837</u>.

Haynes, Marcus & Gorbatov, Alexei & Hejrani, Babak & Hassan, Rakib & Zhao, J & Zhang, F & Reading, Anya. (2020). AusArray: imaging the lithospheric mantle using body- wave tomography. 10.11636/134501.

Hutchings, L., B. Bonner, S. Jarpe and A. Singh. (2014). Micro-earthquake Analysis for Reservoir Properties at the Prati-32 Injection Test, The Geysers, California. 10.13140/2.1.2474.2404.

Lees, J. M. (2007). Seismic tomography of magmatic systems, Journal of Volcanology and Geothermal Research, 167, 37-56, https://doi.org/10.1016/j.jvolgeores.2007.06.008.

Rawlinson, N., A. Fichtner, M. Sambridge and M. K. Young (2014), Chapter One - Seismic Tomography and the Assessment of Uncertainty, *Advances in Geophysics*, Elsevier, 55, 1-76, <u>https://doi.org/10.1016/bs.agph.2014.08.001</u>.

Simmons, N., S. Myers, G. Johannesson, Gardar and E. Matzel (2012). LLNL-G3Dv3: Global P wave tomography model for improved regional and teleseismic travel time prediction. *J. Geophys. Res.*, **117**, 10302-. 10.1029/2012JB009525.

Thurber, C. (2003). Seismic Tomography of the Lithosphere with Body Waves, Pure appl. geophys. 160, 717–737, https://doi.org/10.1007/PL00012555.