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LECTURE 4: GRAVITY ANOMALIES AND ISOSTASY 

 

Average gravity on the Earth’s surface is about g=9.8 m/s2, and varies by 

~5300 mgal (about 0.5% of g) from pole to equator. (1 mgal=10-5 m/s2) 

Gravity anomalies are local variations in gravity that result from topographic and 

subsurface density variations, and have amplitudes of several mgal and smaller. 

 

Measurement of Absolute Gravity: 

Pendulum Method: Measure the period 
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 To measure 1 mgal variation, the period must be measured to within 1µs. 

Free-fall Method: Measure the fall of a mass:     
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 To measure 1 µgal variation, time must be measured to within 1ns. 

Rise-and-fall Method: Measure time T for a thrown ball to rise and fall a 

height z: 
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. µgal precision; not portable. 

Measurement of Relative Gravity: 

Stable Gravimeter: Measure ∆s, the 
change in a spring’s length: 
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Unstable Gravimeter: Use a spring with 
 built-in tension, so: 
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 (LaCost-Romberg gravimeter) 

Usage: Adjust the spring length to zero 

using a calibrated screw. 

Sensitivity: 0.01 mgal for a portable device. 

Superconducting Gravimeter: Suspend a niobium sphere in a 

 stable magnetic field of variable strength. Sensitivity: 1 ngal  
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Gravity Corrections 

 

Drift Correction: In relative gravity surveys, instrument drift can be corrected 

by making periodic measurements at a base station with known gravity. 

 

Tidal Correction: Gravity changes during the day due to the tides in a known 

way. Tidal corrections can be computed precisely if time is known. For 

example, if the moon is directly overhead, the tidal correction would be: 
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 This should be added to measured gravity.  

 

Eötvös Correction: Moving eastward at vE, your angular velocity increases by:  
 

    

! 

"# = v
E

R
E

cos$( ) . This change increases the centrigugal acceleration: 

 
    

! 

"a
C

=
da

C

d#

$ 

% 
& 

' 

( 
) "# = 2#R

E
cos*( )

v
E

R
E

cos*

$ 

% 
& 

' 

( 
) = 2#v

E
. Downward gravity changes by:

     

! 

"g = #2$vE cos% . The Eötvös effect decreases gravity when moving east. 

 

Latitude Correction: Absolute gravity is corrected by subtracting normal 
gravity on the reference ellipsoid: 
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Relative gravity is corrected by differentiating gn with respect to λ: 
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"glat = 0.8140sin2# mgal per km north-south displacement. This correction 

is subtracted from stations closer to the pole than the base station. 

 

Terrain Correction: Nearby topography perturbs gravity measurements 

upward due to mass mass excess  above the station (nearby 

 hills) or due to mass deficiency below the station (nearby valleys). The 

terrain correction is computed using: 
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h 2. remove 
layer→ΔgBP 

1. Drop to 
ellipsoid→ΔgFA 
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"g = G dmcos#( ) r 2 + z2( )  

where r and z are the horizontal and 

vertical distances to dm, and θ is the 

angle to the vertical. The terrain 

correction is always positive. 

Integrating over a sector gives: 
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r1 and r2 are the inner and out radii, h is the height, φ is the sector angle. 

 

Bouguer Plate Correction: This correction compensates for a rock layer of 

thickness h between the measurement elevation level and the reference 

level. For a solid disk of density ρ and radius r, the terrain correction is:  
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"gBP = 2#G$h = 0.0419%10&3$ mgal/m if ρ is in kg/m3. 

 This correction must be subtracted, unless the station is below sea level 

in which case a layer of 

 rock must be added to 

reach the reference level.  

For gravity measured over water, water must be replaced with rock 
by assigning a slab with density 
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Free-air Correction: This correction compensates for gravity’s decrease with 

distance from the Earth’s surface. It is determined by differentiating g: 
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 This correction must be added (for stations above sea level).  
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Combined Correction: Free air and Bouguer corrections are often combined: 
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"gFA +"gBP = 0.3086# 0.0419$ %10#3( ) mgal/m = 0.197 mgal/m 

assuming a crustal density of 2670 kg/m3. To obtain 0.01 mgal accuracy: 

-- location must be known to within 10 m (for latitude correction) 

-- elevation must be known to within 5 cm (for combined correction) 

 

Geoid Correction: For long wavelength surveys, station heights must be 

corrected for the difference in gravity between the geoid height and the 

reference ellipsoid, which can vary spatially. 

 

Density determination 

Knowledge of the density of subsurface rocks is essential for the Bouguer and 

terrain corrections. Density can be measured in several ways: 

 By measuring the density of rocks on the surface 

 Using seismic velocity measurements (velocity increases with density) 

 By applying the combined correction to depth variations in gravity 

measurements in a borehole. Assuming two measurements are separated 

by a height Δh and using the lower station as a reference level, 

The gravity correction at the upper borehole (free-air decreases 

gravity and Bouguer slab between the stations increases gravity) is: 
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"gupper = "gFA + "gBP = 0.3086# 0.0419$ %10
#3( ) "h 

The gravity correction at the lower borehole (Bouguer slab between 

the stations decreases gravity) is: 
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Subtracting the two and solving for density ρ gives: 
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Gravity Anomalies 

 

After the appropriate corrections are applied, gravity data reveal information 

about subsurface density heterogeneity. How should this data be interpreted? 

 

Gravity over a Uniform Sphere 

Gravity for a sphere is the same as 

for a point mass. The z-component:  

    

! 

"gz = "g sin# = G
M

r 2

z

r
  where 

    

! 

M =
4"

3
R

3#$   and       

! 

r
2

= z
2

+ x
2 giving: 

    

! 

"gz =
4#

3
G

"$R3

z2

% 

& 
' 

( 

) 
* 

z2

z2
+ x2

% 

& 
' 

( 

) 
* 

3 /2

 

The maximum is at x=0, where: 
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Rule of thumb:     

! 

z = 0.65w  where w is the width at half height of the anomaly. 

 

Gravity over an Infinite Line 

An infinitely long line of mass m per unit length produces a gravity anomaly: 
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 where z and x are the vertical and horizontal distances to the line. 

 

Gravity over an Infinite Cylinder 

An infinitely long cylinder is a useful analogue for a buried syncline or anticline. 
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Rule of thumb:     

! 

z = 0.5w . A structure must be more than 20× longer than it is 

wide or deep for the “infinite” approximation to be valid (ignore edge effects). 
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x3/4 

Δg/4 

 

Gravity over a Semi-Infinite Horizontal Sheet 

A horizontally truncated thin sheet can 

be used to approximate a bedded 

formation offset by a fault. If the fault is 

centered at x=0, z0=0, then the gravity  

anomaly is:      
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Rule of thumb: z0~x1/4~x3/4 

Where x1/4 and x3/4 are the positions where 

the gravity anomaly is ¼ and ¾ its max value. 
Note that as x→∞,     

! 

"gz = 2G"#h , which is the 

solution for a Bouguer Plate anomaly. 

 

Gravity anomaly of arbitrary shape 

Any shape can be approximated as an n-sided 

polygon, the gravity anomaly of which can be 

computed using Talwani’s algorithm. This 

algorithm estimates gravity by 

computing a line integral around 
the perimeter:  
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"gz = 2G"# zd$%  

 

Isostasy 

Long wavelength variations in topography are isostatically compensated at 

depth. This means that the excess mass in positive topography is compensated 

by a mass deficiency at depth. There are three types of isostasy. 
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Airy Isostasy Pratt Isostasy 
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Airy Isostasy: 

Lateral variations in crustal thickness allow surface topography to be 

compensated by a deep crustal root. The thickness of this root is determined by 

requiring the mass in columns above the compensation depth (C) to be equal: 
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Pratt Isostasy: 

Lateral variations in crustal density compensate topography, so again the mass 

in columns above the compensation depth (C) are equal. The density is: 
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Vening Meinesz Isostasy: 

In this type of isostasy, 

short-wavelength topography 

is supported by the elastic 

strength of the crustal 

rocks. The load is instead 

distributed by the bent plate 

over a broad area. This 

distributed load is compensated. 
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Gravity Anomalies over Topography 

Uncompensated topography (Short-wavelengths) 

 Free-air anomaly (apply the free-air correction only): 

Δg+ΔgFA >> 0 because of the topography’s excess mass 

 Bouguer anomaly (apply both free-air and Bouguer plate corrections): 

Δg+ΔgFA-ΔgBP ~ 0 because Bouguer corrects for excess mass.  

Compensated topography (Long-wavelengths) 

 Free-air anomaly (apply the free-air correction only): 

Δg+ΔgFA ~ 0 because topography is compensated (no excess mass) 

 Bouguer anomaly (apply both free-air and Bouguer plate corrections): 

Δg+ΔgFA-ΔgBP << 0 because Bouguer removes additional mass.  

Undercompenstated topography: A too-shallow root, yields Δg+ΔgFA>0 

Overcompensated topography: A too-shallow root, yields Δg+ΔgFA<0 

  

Geoid Anomalies over Topography 

The gravitational acceleration can be approximated as: 
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We can approximate the change in potential as: 
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Thus, the geoid anomaly should be positive over compensated positive 

topography (e.g., the continental lithosphere, mid-ocean ridges, Tibet, Andes) 

The geoid gives better constraints on the depth-distribution of mass than does 

gravity. 


