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1. GRAVITATION POTENTIAL 

1.1. Spherical Harmonic Expansion of the Earth 
Gravitational Potential. Stokes Coefficients 

The gravitational potential at point P outside the Earth 
due to the heterogeneous mass distribution inside the Earth 
volume is 

U=G dM 
I 

(1) 
Ma 

where G is gravitational constant, M is Earths mass and a is 
distance between a mass element dM and point P. The 
potential U is conveniently expressed through a spherical 
harmonic expansion in a terrestrial reference frame [ 1,2] 

UAy i 5 (lq 
n=Om=O r 

X (CnmCOS mh + S nm sin mh ) Pnm(Sin Cp) (2) 

where R is equatorial radius, r, g, h are spherical 
coordinates of point P. P,, (sin cp) is Legendre polynomial 
of degree n and order m. C,, and S,, refer to the Stokes’ 
coefficients which represent integral functions of the mass 
distribution inside the Earth [ 1,2] 
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With definition (3), COO = 1 and SOO =.O. 
It is classical to choose the coordinate system located at the 
Earth center of mass, hence ClO, Cl 1, S 11 = 0. 

The second degree Stokes’ coefficients are related to the 
moments and products of inertia Iij with respect to the axes 
of the reference system 

C20 = I”;; [I33 - $- (111 + I22 11 (4) 
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The choice of the coordinate system is usually made with 
the assumption that the z-axis lies close to the mean axis of 
rotation and mean axis of maximum inertia. Since the latter 
two are close together, C21 and S21 are small quantities. 
C20 is the largest of all Stokes’ coefficients. It is called the 
dynamical flattening. It is on the order of 10-3. All other 
coefficients are on the order of 10-6. 

Stokes’ coefficients are classicaly derived from the 
analysis of orbital perturbations of Earth’ satellites. Sets of 
Cnml Snm coefficients are improved regularly. Table 1 
gives the first Cnm, Snm coefficients (up to degree 6) of 
the GEM-T3 geopotential model [3]. The coefficients are 
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normalized, i.e., are multiplied by a normalization factor TABLE 1. Spherical Harmonic Normalized Coefficients of 
equal to the GEM-T3 Geopotential Model (units of 106) 

1 for n = 0 (7) 
(2n + 1 )1’2 

and 

[ 

(n + m)! 1 l/2 
for n # 0 (8) 

2(2n+l)(n-m)! 

The GEM-T3 model, complete to degree and order 50, is 
derived from tracking data of 31 satellites and combines 
satellite altimeter data over oceans and surface gravimetric 
data. Other combined geopotential models have been 
derived up to degree 360 [4]. 

The long-wavelength geoid surface (equipotential surface 
of the Earth gravity field coinciding with the mean sea 
level) is presented in Figure 1. It is based on the Cnm, Snm 
coefficients of the GEM-T3 model up to degree 50. 

During the past decade, shorter wavelength geoid 
undulations have been mapped directly by altimetric 
satellites over the whole oceanic domain. Figure 2 shows 
the medium and short-wavelength geoid undulations 
mapped by the Geosat satellite. Geoid undulations are due 
to density heterogeneities in the mantle. At the shortest 
wavelengths, geoid undulations result from topography and 
crustal density variations. 

1.2. Power Spectrum of the Geopotential 
The power spectrum or degree variance of the 

geopotential is given by 

Pn= 2 (Cnrn2 + Snm2) 
m=O 

(9) 

Figure 3 shows a Log plot of the power spectrum of a 
recent geopotential model as well as of the Kaula’s 
empirical rule [5] stating that the dimensionless power 
spectrum of the geopotential follows as 

P, = (2n + 1) (lo- %i 2, (10) 

2. GEOID AND GRAVITY ANOMALIES 

2.1. Geoid, Geoid Height, Gravity Anomalies and 
Deflection of the Vertical 

The geoid is defined as the equipotential surface of the 
gravity potential W = U + Z and coincides with the mean 
sea level. Z is the kinetic potential due to the rotational 
motion of the Earth 

Index Value 
n m C S 

1 0 
1 1 
2 0 
2 1 
2 2 
3 0 
3 1 
3 2 
3 3 
4 0 
4 1 
4 2 
4 3 
4 4 
5 0 
5 1 
5 2 
5 3 
5 4 
5 5 
6 0 
6 1 
6 2 
6 3 
6 4 
6 5 
6 6 

-484.1651 

2.439 
0.9572 
2.0277 
0.9045 
0.7203 
0.5395 

-0.5361 
0.3502 
0.9909 

-0.1888 
0.0683 

-0.0582 
0.6527 

-0.4523 
a.2956 

0.1738 
-0.1495 
-0.0769 

0.0487 
0.0572 

-0.0868 
-0.2673 

0.0096 

-1.400 

0.2492 
-0.6194 
1.4139 

-0.4734 
0.6630 
-0.2009 
0.3094 

-0.0960 
-0.3239 
-0.2153 
0.0497 

-0.6689 

0.0269 
-0.3740 
0.0094 

-0.4713 
-0.5367 
-0.2371 

GM 0.398600436 x 1015 m3 se2 

Equatorial Radius 0.6378137 x lo7 m 

Flattening 11298.257 

Light Velocity 0.299792458 x lo9 m s-l 

z = ; &%0& (11) 

o is speed of rotation, r is geocentric distance and cp is 
latitude. 
Geoid height is measured above a reference surface, a 
conventional ellipsoid of revolution approximating the real 
figure of the Earth. The reference ellipsoid is usually 
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Fig. 1 : Long-wavelength geoid surface deduced from the Cnm, Snm (up to n = 50) coefficients of the 
geopotential (GEM-T3 model, [3]). The Cnm, Snm coefficients are derived from the analysis of orbital 
perturbations of a large number of geodetic satellites in different inclinations (Level curves at 5 m 
interval). Solid and dashed curves correspond respectively to positive and negative geoid anomalies. 

defined as the equipotential surface V = constante with 6gp = gp - rp (15) 

V= y I+*- 1 C2no(~~nP2no(si* cp) 
1 1 

+ Z (12) 

The reference ellipsoid has same potential, same mass and 
center of mass, same angular velocity and same dynamical 
flattening as the real Earth. The geoid height measured 
above the reference ellipsoid (Figure 4) is related to the 
perturbing potential T, difference between true potential W 
and potential of the reference ellipsoid V (at the same 
point), through 

N=T- (13) 
g 

g is mean surface gravity 
The actual gravity vector is 

g=gradW (14) 

The gravity perturbation vector on the geoid is given by 

where y = grad V is the normal gravity vector of the 
ellipsoid. 
A more useful quantity is the gravity anomaly vector 
defined as 

Agp=gp - rq 

where points p and q are on the geoid and ellipsoid 
respectively. 
The magnitude and direction of the vector Ag are called 
respectively gravity anomaly and deflection of the vertical 
(i.e., angle between the normal to the geoid and the normal 
to the ellipsoid). Ag is related to the perturbing potential 
through 

The deflection of the vertical has two components (north- 
south 5 and east-west 11). The relationships between 
components &, and q of the deflection of the vertical, and 
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Fig. 2 : Marine geoid mapped by satellite altimetry. 
Since 1975, several geodetic satellites carrying onboard altimeter instruments have performed a direct 
mapping of sea surface heights hence of geoid undulations. The geoid surface presented above is derived 
from altimetric measurements collected in 1987 and 1988 by the Geosat satellite from the US Defense 
Mapping Agency. Owing to the dense coverage of oceanic areas, satellite altimetry has revealed high 
resolution features in the geoid surface. 
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Fig. 3 : Log plot of the power spectrum of the GEM-T3 
geopotential model (A) and of the Kaula’s empirical rule 
(solid curve) versus harmonic degree. 

Fig. 4 : Schematic representation of the reference 
surfaces. 
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geoid height and gravity anomaly are 

+‘a? 
r acp 

(17) 

q=-laN 
rcoscp ah 

(1’3) 

-G i%+atl ,d& [ 1 ax ay m 
(19) 

x, y are local rectangular coordinates (dx = Rdq, 
dy = Rcos (P d h) 
For geophysical purposes, it is sometimes convenient to 
refer geoid height with respect to the hydrostatic reference 
ellipsoid, i.e., the ellipsoid which has the hydrostatic 
flattening of a fluid rotating Earth. 
Table 2 gives the numerical values of Earth geodetic 
parameters adopted by the International Earth Rotation 
Service (IERS) standards [6]. 

2.2. Isostasy 
The principle of isostasy states that topographic masses are 
balanced (or compensated) by underlying mass deficiency 
in such a way that at a given depth (the depth of 
compensation) the pressure is hydrostatic. To a good 
approximation, the Earth is in isostatic equilibrium. Isostatic 
compensation may be achieved through a variety of 
mechanisms. Most topographic loads of wavelengths < 50 
km are supported by the strength of the lithosphere and are 
uncompensated. In the range 50-500 km, loads are 
supported by elastic flexure of the upper lithosphere. At 
wavelengths > 500 km, topography is in local isostatic 
equilibrium or dynamically supported [7, 81. 
Classical models of local isostatic compensation are Airy 
and Pratt models (Figure 5). The Airy model assumes that 
the topography is balanced by a crust of constant density but 
variable thickness according to 

t= P*h 
(Pm - PC) 

(20) 

with p* = pc for topography above sea level and 
p* = pc - pw for topography below sea level. 
t is crustal root, h is topographic height above or below sea 
level, pw , pc and pm are seawater, crust and mantle 
densities. 
In the Pratt model, the topography is compensated by lateral 
density variations in a layer of constant thickness above the 
depth of compensation. The variable density is 

pAJ!Y 
H+h 

(21) 

TABLE 2. Numerical Values of Earths Geodetic 
Parameters According to the International Earth Rotation 
Service (IERS) Standards [6] 

Name Value in SI unit 

Earth Mass (M) 
Product of the Earth’s mass by 
the gravitational constant (GM) 

Observed dynamical flattening 
Normalized value (C20) 
Non Normalized value (J2) 
Equatorial radius (Re) 
Polar radius (Rp) 
Angular velocity (0) 
Observed inverse flattening (f-l) 
Hydrostatic inverse flattening 
(fh-l) 
Equatorial gravity (ge) 
Polar gravity (gp) 
Hydrostatic dynamical flattening 
(C2Oh) 
Equatorial moments of inertia 

(Ill) 
(122) 
Polar moment of inertia (133) 

5.973 x 1O24 kg 

3.986004418 x 1014 
m3 sm2 

- 484.1651 x 10-6 
1082.6362 x 10-6 
6378136.3 m 
6356753.0 m 
7.292115 x 10m5rad s-l 
298.257 

299.638 
9.780328 m ss2 
9.832186 m se2 

-480.2x lo6 

8 0094 

810096 

x 1O37 kg m2 
x 1O37 kg m2 

8.0358 x 1O37 kg m2 

with D* = pcH for topography above sea level and 
D* = p,H + p 

d” 
h for topography below sea level. H is the 

compensation epth. 
pw = 1.03 x lo3 kg me3, pc = 2.8 x lo3 kg mm3 and 
pm = 3.3 x lo3 kg rne3, 

For a two-dimensional locally compensated topography, 
the geoid height N is given by [7] 

N=- 2T 
Z~J(X, 4 dz (22) 

z is depth positive downward, Ap (x, z) is 2-D density 
contrast occuring between z = 0 and z = H. 

3. TOPOGRAPHY AND DISTRIBUTION OF 
LANDFORMS 

3.1. Actual Earth Topography 
The Earth topography presents a bimodal distribution 

with a peak near 0.5 km corresponding to the mean 
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Fig. 5 : Classical models (Airy and Pratt) of local 
isostasy. 

elevation of continental areas and a peak near 4.5 km 
corresponding to the mean ocean depth (Figure 6). Table 3 
gives the coefficients t’nm, t”nm (up to degree 6) of the 
spherical harmonic expansion of the Earth topography T. 
Coefficient are defined according to 

T(cp, A) = ; E (t’nmCOS mh + t”nmSin mh) 
n=Om=O 

x Pnm (sin Cp) (23) 

The data set used to derive the t’,,, t”,, coefficients is the The uneven ocean-continent distribution is usually 
ETOPO 5 data base distributed by the National Geophysical expressed through the ocean-continent function C, equal to 
Data Center in Boulder, Colorado. ETOPO 5 gives 1 over oceanic areas and 0 over continents. It can be 
interpolated topography above and below sea level on a expressed through a spherical harmonic expansion 

I 
-5000 0 5000 

TOPOGRAPHIC HEIGHTS (m) 

Fig. 6 : Histogram of the Earth topographic heights 
(above and below sea level) refered to sea level. 

regular 5’ x 5’ grid. Other topographic data bases have also 
been developed (e.g., the OSUJAN89, [9]). 
Figure 7 presents the power spectrum of T (defined as in 
relation (9)) showing a regular decrease with increasing 
degree. Peaks at n=l and 3 relate to the preferential 
grouping of continents over a single hemispheric cap and in 
northern latitudes. 

3.2. Oceanfloor Topography 
The mean depth of ocean ridges is = 2.5 km although 

regional variations off 1 km around the mean are observed. 
Depth of the oceanfloor increases regularly away from mid- 
ocean ridges as a result of thermal cooling and contraction 
of the oceanic lithosphere. Thermal subsidence of the 
seafloor is well approximated by an empirical relationship 
of the form [7] 

d = do + A tl/2 (24) 

d is seafloor depth referred to sea-level and positive 
downward, do is mean depth of mid-ocean ridges and t is 
crustal age. 
The value of A is around 350 m/(my)l/2 if d and do are 
expressed in m and t in my. 
Depth anomalies refer to oceanfloor topography corrected 
for thermal subsidence. 

3.3. The Ocean-Continent Distribution 
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TABLE 3. Spherical Harmonic Normalized Coefficients of TABLE 4. Spherical Harmonic Nxmalized Coefficients of 

the Earth’s Topography (in 103m) the Ocean-Continent Function (units of 10-l) 

index y&g 
n m C S 

Index Value 
n m C S 

0 
1 
1 
2 
2 
2 
3 
3 
3 
3 
4 
4 
4 
4 
4 
5 
5 
5 
5 
5 
5 
6 
6 
6 
6 
6 
6 
6 

2 
0 
1 
2 
3 
0 
1 
2 
3 
4 
0 
1 
2 
3 
4 
5 
0 
1 
2 
3 
4 
5 
6 

-2.3890 
0.6605 
0.6072 
0.5644 
0.3333 
0.4208 

-0.1683 
-0.1518 
0.4477 
0.1299 
0.3612 

-0.2241 
-0.3928 
0.3761 

-0.6387 
-0.55 14 
-0.0406 
-0.0216 
0.1232 
0.5254 

-0.0549 
0.2567 
0.0013 
0.0247 
0.0601 
0.1960 

-0.1076 
0.0354 

0.4062 

0.3 173 
0.0839 

0.1244 
0.4589 
0.5733 

-0.2563 
0.0716 
-0.1291 
0.4703 

-0.0770 
-0.1577 
0.0386 

-0.0654 
0.2276 

-0.0171 
-0.1323 
0.1865 

-0.1737 
-0.2075 
0.0282 

0 
1 
1 
2 
2 
2 
3 
3 
3 
3 
4 
4 
4 
4 
4 
5 
5 
5 
5 
5 
5 
6 
6 
6 
6 
6 
6 
6 

0 
0 
1 
0 
1 
2 
0 
1 
2 
3 
0 
1 
2 
3 
4 
0 
1 
2 
3 
4 
5 
0 

-7.102 
-1.193 
-1.076 
-0.5906 
-0.3954 

0.3861 
0.4747 
0.4709 
0.6450 

-0.1058 
-0.2791 

0.3633 
0.8801 

-0.4984 
0.1571 
1.0320 

-0.0379 
0.4983 

-0.3027 
-0.9289 

0.0058 
-0.3264 

0.0612 
0.1454 
0.0129 

-0.2704 
0.1984 

-0.0623 

-0.5905 

-0.0061 
-0.0117 

-0.3871 
-0.8860 
-0.8214 

0.2661 
-0.2185 
0.0526 

-1.0180 

0.1281 
0.2619 

-0.1275 
0.3000 
-0.4907 

0.1712 
-0.0220 
-0.2713 
0.2420 
0.2467 

-0.1399 

HARMONIC DEGREE 

Fig. 7 : Power spectrum of the Earth topography (units : 
105 m2) versus harmonic degree. 

I  ”  

Values Of COnm, SOnm are listed in Table 4 up to degree 6. 
The data set used to derive the ocean-continent function is 
the ETOPO 5 topography data base. 

C=n~Om~O(COnnCOSmh+SOnnSinmh ) 

x Prim (Sin Cp) (25) 
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